Chitosan Nanococktails Containing Both Ceria and Superparamagnetic Iron Oxide Nanoparticles for Reactive Oxygen Species-Related Theranostics (original) (raw)
Abstract
Reactive oxygen species (ROS) play an essential role in the progression of many chronic diseases like atherosclerosis and rheumatoid arthritis. For decades, antioxidant compounds have always been considered as potential treatments for these ROS-related diseases. Concomitantly, noninvasive imaging systems such as magnetic resonance imaging (MRI) have also been widely used in the diagnosis of diseases, especially atherosclerosis. In this study, we investigated the feasibility to develop chitosan nanococktails containing both nanoceria and superparamagnetic iron oxide nanoparticles for ROS-related theranostics. Nanoceria utilized as therapeutic modules capable of ROS scavenging and iron-oxide nanoparticles utilized as imaging agents for MRI have been synthesized separately. Subsequently, two versions of theranostic chitosan nanococktails containing both nanoceria and iron oxide nanoparticles (Chit-IOCO and Chit-TPP-IOCO) were successfully synthesized via two different mechanisms, electrostatic self-assembly, and ionic gelation. In vitro studies such as cytotoxicity, MRI, and ROS scavenging were performed. These theranostic nanococktails demonstrated effective ROS scavenging and MRI contrast as a potential platform for treatment and diagnosis of ROS-related diseases. Results indicated that both Chit-IOCO and Chit-TPP-IOCO can reduce the ROS level of the lipopolysaccharide-stimulated macrophage J774A.1 to the baseline level. Chit-IOCO was less toxic to the cells than Chit-TPP-IOCO. In addition, Chit-IOCO exhibited higher MRI relaxivity than Chi-TPP-IOCO (308 and 150 mM −1 s −1 , respectively), indicating that Chi-IOCO was more effective than Chit-TPP-IOCO as an MRI contrast agent in macrophages. Taken together, Chit-IOCO nanococktail demonstrates outstanding potential for treatment and diagnosis of ROS-related diseases. Potentially, this nanococktail can be easily modified to include new modules, allowing future application of personalized medicine.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (75)
- Shehzahdi S. Moonshi -Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia Andrew K. Whittaker -Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia; orcid.org/0000-0002-1948- 8355 Complete contact information is available at: https://pubs.acs.org/10.1021/acsanm.1c00141
- Notes ■ REFERENCES
- Apel, K.; Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373- 399.
- Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335-344.
- Alfadda, A. A.; Sallam, R. M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 2012, 936486.
- Phaniendra, A.; Jestadi, D. B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11-26.
- Forrester, S. J.; Kikuchi, D. S.; Hernandes, M. S.; Xu, Q.; Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018, 122, 877-902.
- Kattoor, A. J.; Pothineni, N. V. K.; Palagiri, D.; Mehta, J. L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42.
- Cichon, N.; Lach, D.; Dziedzic, A.; Bijak, M.; Saluk, J. The inflammatory processes in atherogenesis. Pol. Merkuriusz Lek. 2017, 42, 125-128.
- Afroz, R.; Cao, Y.; Rostam, M. A.; Ta, H.; Xu, S.; Zheng, W.; Osman, N.; Kamato, D.; Little, P. J. Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: implications for lipoprotein binding and atherosclerosis. Pharmacol. Ther. 2018, 187, 88-97.
- Mateen, S.; Moin, S.; Khan, A. Q.; Zafar, A.; Fatima, N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS One 2016, 11, No. e0152925.
- Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signaling 2014, 20, 1126-1167.
- Curi, R.; de Siqueira Mendes, R.; de Campos Crispin, L. A.; Norata, G. D.; Sampaio, S. C.; Newsholme, P. A past and present overview of macrophage metabolism and functional outcomes. Clin. Sci. 2017, 131, 1329-1342.
- Rajagopalan, S.; Meng, X. P.; Ramasamy, S.; Harrison, D. G.; Galis, Z. S. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 1996, 98, 2572-2579.
- Montecucco, F.; Mach, F. Atherosclerosis is an inflammatory disease. Semin. Immunopathol. 2009, 31, 1-3.
- Furie, B.; Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 2008, 359, 938-949.
- Sareila, O.; Hagert, C.; Kelkka, T.; Linja, M.; Xu, B.; Kihlberg, J.; Holmdahl, R. Reactive oxygen species regulate both priming and established arthritis, but with different mechanisms. Antioxid. Redox Signaling 2017, 27, 1473-1490.
- Kładna, A.; Aboul-Enein, H. Y.; Kruk, I.; Lichszteld, K.; Michalska, T. Scavenging of reactive oxygen species by some nonsteroidal anti-inflammatory drugs and fenofibrate. Biopolymers 2006, 82, 99-105.
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1-10.
- Carocho, M.; Ferreira, I. C. F. R. A review on antioxidants, prooxidants and related controversy: natural and synthetic com- pounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15-25.
- Hirst, S. M.; Karakoti, A. S.; Tyler, R. D.; Sriranganathan, N.; Seal, S.; Reilly, C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848-2856.
- Hirst, S. M.; Karakoti, A.; Singh, S.; Self, W.; Tyler, R.; Seal, S.; Reilly, C. M. Bio-distribution andin vivoantioxidant effects of cerium oxide nanoparticles in mice. Environ. Toxicol. Pharmacol. 2013, 28, 107-118.
- Teterin, Y. A.; Teterin, A. Y.; Lebedev, A. M.; Utkin, I. O. The XPS spectra of cerium compounds containing oxygen. J. Electron Spectrosc. Relat. Phenom. 1998, 88-91, 275-279.
- Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nano- particles. Chem. Commun. 2007, 10, 1056-1058.
- Chaudhury, K.; Babu K, N.; Singh, A. K.; Das, S.; Kumar, A.; Seal, S. Mitigation of endometriosis using regenerative cerium oxide nanoparticles. Nanomedicine 2013, 9, 439-448.
- Clark, A.; Zhu, A.; Sun, K.; Petty, H. R. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J. Nanopart. Res. 2011, 13, 5547-5555.
- Yan, K. C.; Sedgwick, A. C.; Zang, Y.; Chen, G. R.; He, X. P.; Li, J.; Yoon, J.; James, T. D. Sensors, imaging agents, and theranostics to help understand and treat reactive oxygen species related diseases. Small Methods 2019, 3, 1900013.
- Ta, H. T.; Li, Z.; Wu, Y.; Cowin, G.; Zhang, S.; Yago, A.; Whittaker, A. K.; Xu, Z. P. Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles. Mater. Res. Express 2017, 4, 116105.
- Vazquez-Prada, K. X.; Lam, J.; Kamato, D.; Xu, Z. P.; Little, P. J.; Ta, H. T. Targeted Molecular Imaging of Cardiovascular Diseases by Iron Oxide Nanoparticles. Arterioscler., Thromb., Vasc. Biol. 2021, 41, 601-613.
- Wang, Y.-X. J.; Hussain, S. M.; Krestin, G. P. Super- paramagnetic iron oxide contrast agents: physicochemical character- istics and applications in MR imaging. Eur. Radiol. 2001, 11, 2319- 2331.
- Ta, H. T.; Arndt, N.; Wu, Y.; Lim, H. J.; Landeen, S.; Zhang, R.; Kamato, D.; Little, P. J.; Whittaker, A. K.; Xu, Z. P. Activatable magnetic resonance nanosensor as a potential imaging agent for detecting and discriminating thrombosis. Nanoscale 2018, 10, 15103- 15115.
- Liu, Y.; Wu, Y.; Zhang, R.; Lam, J.; Ng, J. C.; Xu, Z. P.; Li, L.; Ta, H. T. Investigating the use of layered double hydroxide nanoparticles as carriers of metal oxides for theranostics of ROS- related diseases. ACS Appl. Bio Mater. 2019, 2, 5930-5940.
- Ta, H.; Li, Z.; Hagemeyer, C.; Cowin, G.; Palasubramaniam, J.; Peter, K.; Whittaker, A. Self-confirming molecular imaging of activated platelets via iron oxide nanoparticles displaying unique dual MRI contrast. Atherosclerosis 2017, 263, No. e146.
- Arndt, N.; Tran, H. D. N.; Zhang, R.; Xu, Z. P.; Ta, H. T. Different approaches to develop nanosensors for diagnosis of diseases. Adv. Sci. 2020, 7, 2001476.
- Zhang, Y.; Koradia, A.; Kamato, D.; Popat, A.; Little, P. J.; Ta, H. T. Treatment of atherosclerotic plaque: perspectives on theranostics. J. Pharm. Pharmacol. 2019, 71, 1029-1043.
- Ta, H. T.; Li, Z.; Hagemeyer, C. E.; Cowin, G.; Zhang, S.; Palasubramaniam, J.; Alt, K.; Wang, X.; Peter, K.; Whittaker, A. K. Molecular imaging of activated platelets via antibody-targeted ultra- small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 2017, 134, 31-42.
- Zia, A.; Wu, Y.; Nguyen, T.; Wang, X.; Peter, K.; Ta, H. T. The choice of targets and ligands for site-specific delivery of nanomedicine to atherosclerosis. Cardiovasc. Res. 2020, 116, 2055-2068.
- Ta, H.; Prabhu, S.; Leitner, E.; Jia, F.; Putnam, K.; Bassler, N.; Peter, K.; Hagemeyer, C. Targeted molecular imaging and cell homing in cardiovascular disease via antibody-sortagging. Athero- sclerosis 2015, 241, No. e26.
- Hagemeyer, C. E.; Alt, K.; Johnston, A. P. R.; Such, G. K.; Ta, H. T.; Leung, M. K. M.; Prabhu, S.; Wang, X.; Caruso, F.; Peter, K. Particle generation, functionalization and sortase A-mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nat. Protoc. 2015, 10, 90-105.
- Ta, H. T.; Prabhu, S.; Leitner, E.; Jia, F.; von Elverfeldt, D.; Jackson, K. E.; Heidt, T.; Nair, A. K. N.; Pearce, H.; von zur Muhlen, C.; Wang, X.; Peter, K.; Hagemeyer, C. E. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ. Res. 2011, 109, 365- 373.
- Yusof, N. N. M.; McCann, A.; Little, P. J.; Ta, H. T. Non- invasive imaging techniques for the differentiation of acute and chronic thrombosis. Thromb. Res. 2019, 177, 161-171.
- Ta, H. T.; Peter, K.; Hagemeyer, C. E. Enzymatic antibody tagging: toward a universal biocompatible targeting tool. Trends Cardiovasc. Med. 2012, 22, 105-111.
- Ta, H. T.; Prabhu, S.; Leitner, E.; Jia, F.; Putnam, K.; Bassler, N.; Peter, K.; Hagemeyer, C. Late-Breaking Basic Science Abstracts From the American Heart Association's Scientific Sessions 2010, Chicago, Illinois, November 13-17, 2010. Circ. Res. 2010, 107, e32- e40.
- Ta, H.; Prabhu, S.; Leitner, E.; Putnam, K.; Jia, F.; Bassler, N.; Peter, K.; Hagemeyer, C. A novel biotechnological approach for targeted regenerative cell therapy and molecular imaging of atherothrombosis. Heart, Lung Circ. 2010, 19, S10.
- Zhang, Z.-Q.; Song, S.-C. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials 2016, 106, 13-23.
- Wang, D.; Fei, B.; Halig, L. V.; Qin, X.; Hu, Z.; Xu, H.; Wang, Y. A.; Chen, Z.; Kim, S.; Shin, D. M.; Chen, Z. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano 2014, 8, 6620-6632.
- Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017-6084.
- Singh, N.; Jenkins, G. J. S.; Asadi, R.; Doak, S. H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010, 1, 5358.
- Lam, T.; Pouliot, P.; Avti, P. K.; Lesage, F.; Kakkar, A. K. Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv. Colloid Interface Sci. 2013, 199-200, 95-113.
- Liu, X.; Wei, W.; Yuan, Q.; Zhang, X.; Li, N.; Du, Y.; Ma, G.; Yan, C.; Ma, D. Apoferritin-CeO2nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 2012, 48, 3155- 3157.
- Karakoti, A.; Singh, S.; Dowding, J. M.; Seal, S.; Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422-4432.
- Elahi, N.; Kamali, M.; Baghersad, M. H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537- 556.
- Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan- TPP nanoparticles intended for gene delivery. Colloids Surf., B 2005, 44, 65-73.
- Katas, H.; Alpar, H. O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Controlled Release 2006, 115, 216-225.
- Loutfy, S. A.; El-Din, H. M. A.; Elberry, M. H.; Allam, N. G.; Hasanin, M. T. M.; Abdellah, A. M. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2016, 7, 035008.
- Hajesmaeelzadeh, F.; Shanehsazzadeh, S.; Gruẗtner, C.; Daha, F. J.; Oghabian, M. A. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI. Iran. J. Basic Med. Sci. 2016, 19, 166.
- Korchinski, D. J.; Taha, M.; Yang, R.; Nathoo, N.; Dunn, J. F. Iron Oxide as an MRI Contrast Agent for Cell Tracking. Magn. Reson. Insights 2015, 8, 15-29.
- Moore, K. J.; Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011, 145, 341-355.
- Shirai, T.; Hilhorst, M.; Harrison, D. G.; Goronzy, J. J.; Weyand, C. M. Macrophages in vascular inflammation -From atherosclerosis to vasculitis. Autoimmunity 2015, 48, 139-151.
- Hsu, H.-Y.; Wen, M.-H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 2002, 277, 22131-22139.
- Das, M.; Patil, S.; Bhargava, N.; Kang, J.-F.; Riedel, L. M.; Seal, S.; Hickman, J. J. Auto-catalytic ceria nanoparticles offer neuro- protection to adult rat spinal cord neurons. Biomaterials 2007, 28, 1918-1925.
- Nelson, B.; Johnson, M.; Walker, M.; Riley, K.; Sims, C. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016, 5, 15.
- Schubert, D.; Dargusch, R.; Raitano, J.; Chan, S.-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 2006, 342, 86-91.
- Clark, A.; Zhu, A.; Sun, K.; Petty, H. R. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J. Nanopart. Res. 2011, 13, 5547.
- Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J. I.; Zink, J. I.; Nel, A. E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121- 2134.
- Chen, G.; Xu, Y. Biosynthesis of cerium oxide nanoparticles and their effect on lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male Sprague Dawley rats. Mater. Sci. Eng. C 2018, 83, 148-153.
- Zhu, M.-T.; Wang, B.; Wang, Y.; Yuan, L.; Wang, H.-J.; Wang, M.; Ouyang, H.; Chai, Z.-F.; Feng, W.-Y.; Zhao, Y.-L. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol. Lett. 2011, 203, 162-171.
- Kedziorek, D. A.; Kraitchman, D. L. Superparamagnetic iron oxide labeling of stem cells for MRI tracking and delivery in cardiovascular disease. Stem Cells for Myocardial Regeneration; Springer, 2010; pp 171-183.
- Riegler, J.; Liew, A.; Hynes, S. O.; Ortega, D.; O'Brien, T.; Day, R. M.; Richards, T.; Sharif, F.; Pankhurst, Q. A.; Lythgoe, M. F. Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials 2013, 34, 1987-1994.
- Ta, H. T.; Prabhu, S.; Leitner, E.; Jia, F.; Putnam, K.; Bassler, N.; Peter, K.; Hagemeyer, C. Antibody-sortagging: a universal https://doi.org/10.1021/acsanm.1c00141
- ACS Appl. Nano Mater. XXXX, XXX, XXX-XXX N approach towards targeted molecular imaging and cell homing in cardiovascular disease. Circ. Res. 2010, 107, e37-e38.
- Dadfar, S. M.; Roemhild, K.; Drude, N. I.; von Stillfried, S.; Knuchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Delivery Rev. 2019, 138, 302-325.
- Xie, J.; Jon, S. Magnetic nanoparticle-based theranostics. Theranostics 2012, 2, 122.
- Nandwana, V.; Ryoo, S.-R.; Kanthala, S.; McMahon, K. M.; Rink, J. S.; Li, Y.; Venkatraman, S. S.; Thaxton, C. S.; Dravid, V. P. High-density lipoprotein-like magnetic nanostructures (HDL-MNS): theranostic agents for cardiovascular disease. Chem. Mater. 2017, 29, 2276-2282.
- Oumzil, K.; Ramin, M. A.; Lorenzato, C.; Hémadou, A.; Laroche, J.; Jacobin-Valat, M. J.; Mornet, S.; Roy, C.-E.; Kauss, T.; Gaudin, K.; Clofent-Sanchez, G.; Barthélémy, P. Solid lipid nano- particles for image-guided therapy of atherosclerosis. Bioconjugate Chem. 2016, 27, 569-575.