Natural Convection in a Square Cavity with Spatial SideWall Temperature Variation (original) (raw)

A Study on Natural Convection of Air in a Square Cavity with Partially Thermally Active Side Walls

Open Journal of Fluid Dynamics, 2017

In this present work, we study heat transfer in a confined environment. We have to determine the thermal and dynamics fields of the cavity while observing the effect of the Rayleigh number which depends on the characteristics of the fluid and the temperatures imposed. The behavior of boundary layers in natural convection is analyzed along this square cavity. The central halves of its vertical walls are heated at different temperatures. The left active part is at a higher temperature than the one on the right wall. The remaining inactive parts and the horizontal walls (upper and lower) are adiabatic. The thermal and dynamic modeling of two-dimensional problem was done using a calculation code Fortran 90 and a visualization software ParaView based on the finite volume method. The equations governing this phenomenon of unsteady flow have thus been solved. This allows the modeling of both air flow and heat transfer with a numerical stabilization of the solution. So, we have presented our results of numerical simulations using a visualization tool. The results show the different velocity and temperature curves, velocity vectors and isotherms in laminar flow regime.

Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with Non-uniform heating of Bottom Wall

In this paper, we analyze the fluid flow and heat transfer characteristics inside a two dimensional quadrantal cavity filled with air. The cavity is heated non-uniformly from the bottom wall and the vertical wall is cooled to a constant temperature while the curved wall is thermally insulated. Finite element method is used to solve the transport equations. The results are illustrated in the form of streamlines, isotherms, local Nusselt number and average Nusselt number. It reveals that the local Nusselt number at the bottom wall follows a sinusoidal variation and moreover at some location, the Nusselt number is negative because of the imposed temperature distribution on the wall. It further reveals that the mechanism of heat transfer is conduction at lower values of Rayleigh number, while heat transfer is due to convection at higher values of Rayleigh number.

Effects of thermal boundary conditions on natural convection flows within a square cavity

International Journal of Heat and Mass Transfer, 2006

A numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed. A penalty finite element method with bi-quadratic rectangular elements has been used to solve the governing mass, momentum and energy equations. The numerical procedure adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 10 3 6 Ra 6 10 5 and Prandtl number Pr, 0.7 6 Pr 6 10) with respect to continuous and discontinuous Dirichlet boundary conditions. Non-uniform heating of the bottom wall produces greater heat transfer rates at the center of the bottom wall than the uniform heating case for all Rayleigh numbers; however, average Nusselt numbers show overall lower heat transfer rates for the non-uniform heating case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes, power law correlations between average Nusselt number and Rayleigh numbers are presented.

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH TEMPERATURE DEPENDENT HEAT GENERATION

Unsteady natural convection laminar flows in a square cavity formed by insulated bottom and top walls, uniformly heated left wall and the cooled right wall has been investigated numerically. The governing equations are transformed into non-dimensional form and the resulting partial differential equations are solved applying upwind finite difference method together with Successive Over-Relaxation (SOR) scheme. The effect of the heat generation and the Rayleigh number on streamlines and isotherms as well as on the rate of heat transfer from the heated wall of the cavity are presented.

Steady natural convection flows in a square cavity with linearly heated side wall(s)

International Journal of Heat and Mass Transfer, 2007

The present numerical study deals with natural convection flow in a closed square cavity when the bottom wall is uniformly heated and vertical wall(s) are linearly heated whereas the top wall is well insulated. Non-linear coupled PDEs governing the flow have been solved by penalty finite element method with bi-quadratic rectangular elements. Numerical results are obtained for various values of Rayleigh number (Ra) (10 3 6 Ra 6 10 5 ) and Prandtl number (Pr) (0.7 6 Pr 6 10). Results are presented in the form of streamlines, isotherm contours, local Nusselt number and the average Nusselt as a function of Rayleigh number.

Simulation of Natural Convection in a Square Cavity with Partially Heated and Cooled Vertical Walls

Proceeding of 5th Thermal and Fluids Engineering Conference (TFEC)

Natural convection driven by temperature differences between partially heated and cooled vertical walls in a square cavity is studied numerically. Steady or unsteady cellular flow structures and temperature patterns are illustrated along with the evolution of heat transfer rates in terms of Nusselt number. The cavity is filled with fluids of various Prandtl number, including .024 (liquid metal), .71 (air), 6 (water), and 450 (silicon oil). The effect of Prandtl and Rayleigh numbers on the flow regime and heat transfer is established along with two different thermal boundary conditions.

Numerical Simulation of Natural Convection in a Square Cavity with Partially Active Vertical and Horizontal Walls

2013

A numerical study is performed to analyze the steady natural convection phenomena of air in a square cavity with different locations of the heating portion. The heat sources parts in the left, right and bottom walls of the cavity are maintained at a higher temperature Th, whereas the other parts of these sidewalls are kept at a lower temperature Tc. The enclosure’s top wall is kept insulated. The coupled equations of continuity, momentum and energy are solved by a finite volume method. The SIMPLE algorithm is used to solve iteratively the pressurevelocities coupling. The numerical investigations in this analysis is made over a wide range of parameters, Rayleigh number ( ) and dimensionless heater lengths. The effect of three different heating locations on the vertical walls (bottom, Centre, and top) and the local heat source on the bottom wall was evaluated. Results are presented graphically in the form of streamlines, isotherms and also with a velocity profiles and average Nusselt ...

Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s)

International Journal of Engineering Science, 2005

A penalty finite element analysis with bi-quadratic rectangular elements is performed to investigate the influence of uniform and non-uniform heating of wall(s) on natural convection flows in a square cavity. In the present investigation, one vertical wall and the bottom wall are uniformly and non-uniformly heated while the other vertical wall is maintained at constant cold temperature and the top wall is well insulated. Parametric study for a wide range of Rayleigh number (Ra), 10 3 6 Ra 6 10 6 and Prandtl number (Pr), 0.2 6 Pr 6 100 shows consistent performance of the present numerical approach to obtain the solutions as stream functions and temperature profiles. Heat transfer rates at the heated walls are presented in terms of local Nusselt number.

Numerical Study of Natural Convection Inside a Square Cavity with Non-uniform Heating from Top

Journal of The Institution of Engineers (India): Series C, 2020

The prime objective of the present numerical study is to analyse buoyancy-driven thermal flow behaviour inside an enclosure with the application of nonlinear heating from top surface which is commonly essential in glass industries. A fluid-filled square cavity with sinusoidal heating from top surface, adiabatic bottom wall and constant temperature side walls is considered here. The thermal flow behaviour has been numerically observed with the help of relevant parameters like stream functions, isotherms and Nusselt number. For the present investigation, Rayleigh number (Ra), Prandtl number (Pr) and heating frequency of the wall (x) are varied from 10 3 to 10 6 , 0.7 to 7 and 0.5 to 2, respectively. It has been noticed from the investigation that flow dynamics drastically alter with Ra, x and Pr. However, the effect of Ra on heat transfer rate has been found to be significantly higher while compared with the influences by x and Pr. Keywords Free convection Á Buoyancy Á Rayleigh number Á Pr number Á Sinusoidal heating Greek letters a Thermal diffusivity (m 2 s-1) b Volumetric expansion coefficient (K-1) q Kinetic viscosity (m 2 s-1) t Density of fluid (kg m-3) h Dimensionless temperature x Heating frequency of the top wall

Study on Natural Convection in a Square Cavity with Wavy right vertical wall Filled with Viscous Fluid

In the present study, natural convection problem has been solved in a cavity having three flat walls and the right vertical wall consisting of one undulation and three undulations. The two vertical and bottom walls are cold walls maintained at a fixed temperature whereas the top wall is heated with spatially varying temperature distribution. Air has been taken as the working fluid with Pr =0.71. This problem is solved by SIMPLE algorithm with deferred QUICK scheme in curvilinear coordinates. A wide range of Rayleigh number (10 3 to 10 6) has been chosen for this study. For small Ra, the heat transfer was dominated by conduction across the fluid layers. With increase of Ra, the process began to be dominated by convection. In the presence of undulation the peak point of the heat rejection (negative local Nusselt number) in the right wall increases by 5.54% than left wall for Ra = 10 4. The three undulations case had maximum heat transfer to the uppermost undulation compared to that of the one undulation case.