System-level impact of mitochondria on fungal virulence: to metabolism and beyond (original) (raw)

Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets

Journal of Bioenergetics and Biomembranes, 2011

The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.

Exploiting mitochondria as targets for the development of new antifungals

Virulence, 2016

Mitochondria are essential for cell growth and survival of most fungal pathogens. Energy (ATP) produced during oxidation/reduction reactions of the electron transport chain (ETC) Complexes I, III and IV (CI, CIII, CIV) fuel cell synthesis. The mitochondria of fungal pathogens are understudied even though more recent published data suggest critical functional assignments to fungal-specific proteins. Proteins of mammalian mitochondria are grouped into 16 functional categories. In this review, we focus upon 11 proteins from 5 of these categories in fungal pathogens, OXPHOS, protein import, stress response, carbon source metabolism, and fission/fusion morphology. As these proteins also are fungal-specific, we hypothesize that they may be exploited as targets in antifungal drug discovery. We also discuss published transcriptional profiling data of mitochondrial CI subunit protein mutants, in which we advance a novel concept those CI subunit proteins have both shared as well as specific r...

Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi

PloS one, 2016

Recent estimates of the global burden of fungal disease suggest that that their incidence has been drastically underestimated and that mortality may rival that of malaria or tuberculosis. Azoles are the principal class of antifungal drug and the only available oral treatment for fungal disease. Recent occurrence and increase in azole resistance is a major concern worldwide. Known azole resistance mechanisms include over-expression of efflux pumps and mutation of the gene encoding the target protein cyp51a, however, for one of the most important fungal pathogens of humans, Aspergillus fumigatus, much of the observed azole resistance does not appear to involve such mechanisms. Here we present evidence that azole resistance in A. fumigatus can arise through mutation of components of mitochondrial complex I. Gene deletions of the 29.9KD subunit of this complex are azole resistant, less virulent and exhibit dysregulation of secondary metabolite gene clusters in a manner analogous to dele...

Fungal-specific subunits of the Candida albicans mitochondrial complex I drive diverse cell functions including cell wall synthesis

Cellular microbiology, 2015

Our published research has focused upon the role of Goa1p, an apparent regulator of the Candida albicans mitochondrial complex I (CI). Lack of Goa1p effects optimum cell growth, CI activity, and virulence. Eukaryotic CI is composed of a core of 14 alpha-proteobacterial subunit proteins and a variable number of supernumerary subunit proteins. Of the latter group of proteins, one (NUZM) is fungal-specific, and a second (NUXM) is found in fungi, algae and plants but is not a mammalian CI subunit protein. We have established that NUXM is orf19.6770 and NUZM is orf19.287 in C. albicans. Herein, we validate both subunit proteins as NADH:ubiquinone oxidoreductases (NUO) and annotate their gene functions. To accomplish these objectives, we compared null mutants of each with WT and gene-reconstituted strains. Genetic mutants of genes NUO1 (19.6770) and NUO2 (19.287), not surprisingly, each had reduced oxygen consumption, decreased mitochondrial redox potential, decreased CI activity, increas...

Mitochondrial Two-Component Signaling Systems in Candida albicans

Eukaryotic Cell, 2013

Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES http://ec.asm.org/content/12/6/913#ref-list-1 at: This article cites 43 articles, 29 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to: on June 12, 2014 by guest http://ec.asm.org/ Downloaded from on June 12, 2014 by guest

The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans

Fungal genetics and biology : FG & B, 2015

The fungus Candida albicans is both a pathogen and a commensal in humans. The ability to utilize different carbon sources available in diverse host niches is vital for both commensalism and pathogenicity. N-acetylglucosamine (GlcNAc) is an important signaling molecule as well as a carbon source in C. albicans. Here, we report the discovery of a novel gene MCU1 essential for GlcNAc utilization. Mcu1 is located in mitochondria and associated with multiple energy- and metabolism-related proteins including Por1, Atp1, Pet9, and Mdh1. Consistently, inactivating Por1 impaired GlcNAc utilization as well. Deletion of MCU1 also caused defects in utilizing non-fermentable carbon sources and amino acids. Furthermore, MCU1 is required for filamentation in several inducing conditions and virulence in a mouse systemic infection model. We also deleted TGL99 and GUP1, two genes adjacent to MCU1, and found that the gup1/gup1 mutant exhibited mild defects in the utilization of several carbon sources ...

Functional diversity of complex I subunits in Candida albicans mitochondria

Current genetics, 2015

Our interest in the mitochondria of Candida albicans has progressed to the identification of several proteins that are critical to complex I (CI) activity. We speculated that there should be major functional differences at the protein level between mammalian and fungal mitochondria CI. In our pursuit of this idea, we were helped by published data of CI subunit proteins from a broad diversity of species that included two subunit proteins that are not found in mammals. These subunit proteins have been designated as Nuo1p and Nuo2p (NADH-ubiquinone oxidoreductases). Since functional assignments of both C. albicans proteins were unknown, other than having a putative NADH-oxidoreductase activity, we constructed knock-out strains that could be compared to parental cells. The relevance of our research relates to the critical roles of both proteins in cell biology and pathogenesis and their absence in mammals. These features suggest they may be exploited in antifungal drug discovery. Initia...

Mitochondria and the regulation of hypervirulence in the fatal fungal outbreak on Vancouver Island

Virulence

In our recent paper, we demonstrated that the hypervirulence exhibited by a lineage of the fatal fungal pathogen Cryptococcus gattii is associated with its mitochondrial gene expression and an unusual mitochondrial morphology. As an important organelle, the mitochondrion has been linked to various cellular activities, but its role in modulating virulence of pathogens remains unclear. In this addendum, the potential role of mitochondria in determining virulence in eukaryotic pathogens is discussed along with future experiments that may lead to an improved understanding of this topic.

Current perspectives on mitochondrial inheritance in fungi

Cell Health and Cytoskeleton, 2015

The mitochondrion is an essential organelle of eukaryotes, generating the universal energy currency, adenosine triphosphate, through oxidative phosphorylation. However, aside from generation of adenosine triphosphate, mitochondria have also been found to impact a diversity of cellular functions and organ system health in humans and other eukaryotes. Thus, inheriting and maintaining functional mitochondria are essential for cell health. Due to the relative ease of conducting genetic and molecular biological experiments using fungi, they (especially the budding yeast Saccharomyces cerevisiae) have been used as model organisms for investigating the patterns of inheritance and intracellular dynamics of mitochondria and mitochondrial DNA. Indeed, the diversity of mitochondrial inheritance patterns in fungi has contributed to our broad understanding of the genetic, cellular, and molecular controls of mitochondrial inheritance and their evolutionary implications. In this review, we briefly summarize the patterns of mitochondrial inheritance in fungi, describe the genes and processes involved in controlling uniparental mitochondrial DNA inheritance in sexual crosses in basidiomycete yeasts, and provide an overview of the molecular and cellular processes governing mitochondrial inheritance during asexual budding in S. cerevisiae. Together, these studies reveal that complex regulatory networks and molecular processes are involved in ensuring the transmission of healthy mitochondria to the progeny.

Aspergillus fumigatus mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis

Molecular Microbiology, 2012

We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing, and virulence. In contrast to ΔaoxA, ΔcycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing, and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signaling and adaptation.