Myosin 1G Is an Abundant Class I Myosin in Lymphocytes Whose Localization at the Plasma Membrane Depends on Its Ancient Divergent Pleckstrin Homology (PH) Domain (Myo1PH) (original) (raw)

Abstract

Class I myosins, which link F-actin to membrane, are largely undefined in lymphocytes. Mass spectrometric analysis of lymphocytes identified two short tail forms: (Myo1G and Myo1C) and one long tail (Myo1F). We investigated Myo1G, the most abundant in T-lymphocytes, and compared key findings with Myo1C and Myo1F. Myo1G localizes to the plasma membrane and associates in an ATP-releasable manner to the actin-containing insoluble pellet. The IQ؉tail region of Myo1G (Myo1C and Myo1F) is sufficient for membrane localization, but membrane localization is augmented by the motor domain. The minimal region lacks IQ motifs but includes: 1) a PH-like domain; 2) a "Pre-PH" region; and 3) a "Post-PH" region. The Pre-PH predicted ␣ helices may contribute electrostatically, because two conserved basic residues on one face are required for optimal membrane localization. Our sequence analysis characterizes the divergent PH domain family, Myo1PH, present also in long tail myosins, in eukaryotic proteins unrelated to myosins, and in a probable ancestral protein in prokaryotes. The Myo1G Myo1PH domain utilizes the classic lipid binding site for membrane association, because mutating either of two basic residues in the "signature motif" destroys membrane localization. Mutation of each basic residue of the Myo1G Myo1PH domain reveals another critical basic residue in the ␤3 strand, which is shared only by Myo1D. Myo1G differs from Myo1C in its phosphatidylinositol 4,5-bisphosphate dependence for membrane association, because membrane localization of phosphoinositide 5-phosphatase releases Myo1C from the membrane but not Myo1G. Thus Myo1PH domains likely play universal roles in myosin I membrane association, but different isoforms have diverged in their binding specificity.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (44)

  1. Jacobelli, J., Chmura, S. A., Buxton, D. B., Davis, M. M., and Krummel, M. F. (2004) Nat. Immunol. 5, 531-538
  2. Richards, T. A., and Cavalier-Smith, T. (2005) Nature 436, 1113-1118
  3. Foth, B. J., Goedecke, M. C., and Soldati, D. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 3681-3686
  4. Kalhammer, G., and Ba ¨hler, M. (2000) Essays Biochem. 35, 33-42
  5. Engqvist-Goldstein, A. E., and Drubin, D. G. (2003) Annu. Rev. Cell Dev. Biol. 19, 287-332
  6. Kim, S. V., and Flavell, R. A. (2008) Cell. Mol. Life Sci. 65, 2128 -2137
  7. Nambiar, R., McConnell, R. E., and Tyska, M. J. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 11972-11977
  8. Hammer, J. A. (1991) Trends Cell Biol. 1, 50 -56
  9. Adams, R. J., and Pollard, T. D. (1989) Nature 340, 565-568
  10. Doberstein, S. K., and Pollard, T. D. (1992) J. Cell Biol. 117, 1241-1249
  11. Ruppert, C., Godel, J., Mu ¨ller, R. T., Kroschewski, R., Reinhard, J., and Ba ¨hler, M. (1995) J. Cell Sci. 108, 3775-3786
  12. Tyska, M. J., and Mooseker, M. S. (2002) Biophys. J. 82, 1869 -1883
  13. Hirono, M., Denis, C. S., Richardson, G. P., and Gillespie, P. G. (2004) Neuron 44, 309 -320
  14. Hokanson, D. E., Laakso, J. M., Lin, T., Sept, D., and Ostap, E. M. (2006) Mol. Biol. Cell 17, 4856 -4865
  15. Jontes, J. D., and Milligan, R. A. (1997) J. Mol. Biol. 266, 331-342
  16. Lemmon, M. A., and Ferguson, K. M. (2000) Biochem. J. 350, 1-18
  17. Ingley, E., and Hemmings, B. A. (1994) J. Cell. Biochem. 56, 436 -443
  18. Balaji, S., Babu, M. M., Iyer, L. M., and Aravind, L. (2005) Nucleic Acids Res. 33, 3994 -4006
  19. Lemmon, M. A., and Ferguson, K. M. (2001) Biochem. Soc. Transact. 29, 377-384
  20. Hwang, K. J., Mahmoodian, F., Ferretti, J. A., Korn, E. D., and Gruschus, J. M. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 784 -789
  21. Hao, J. J., Wang, G., Pisitkun, T., Patino-Lopez, G., Nagashima, K., Knep- per, M. A., Shen, R. F., and Shaw, S. (2008) J. Proteome Res. 7, 2911-2927
  22. Cozier, G. E., Carlton, J., Bouyoucef, D., and Cullen, P. J. (2004) Curr. Top. Microbiol. Immunol. 282, 49 -88
  23. Brown, M. J., Nijhara, R., Hallam, J. A., Gignac, M., Yamada, K. M., Erland- sen, S. L., Delon, J., Kruhlak, M., and Shaw, S. (2003) Blood 102, 3890 -3899
  24. Wahl, S. M., Katona, I. M., Stadler, B. M., Wilder, R. L., Helsel, W. E., and Wahl, L. M. (1984) Cell. Immunol. 85, 384 -395
  25. Wagner, M. C., Barylko, B., and Albanesi, J. P. (1992) J. Cell Biol. 119, 163-170
  26. Varnai, P., Thyagarajan, B., Rohacs, T., and Balla, T. (2006) J. Cell Biol. 175, 377-382
  27. Wu, S., Skolnick, J., and Zhang, Y. (2007) BMC Biol. 5, 17
  28. Kelley, L. A., and Sternberg, M. J. (2009) Nat. Protoc. 4, 363-371
  29. Ley, K., Tedder, T. F., and Kansas, G. S. (1993) Blood 82, 1632-1638
  30. Dwir, O., Kansas, G. S., and Alon, R. (2001) J. Cell Biol. 155, 145-156
  31. Tyska, M. J., Mackey, A. T., Huang, J. D., Copeland, N. G., Jenkins, N. A., and Mooseker, M. S. (2005) Mol. Biol. Cell 16, 2443-2457
  32. Lee, W. L., Ostap, E. M., Zot, H. G., and Pollard, T. D. (1999) J. Biol. Chem. 274, 35159 -35171
  33. Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., and Luna, E. J. (2002) J. Biol. Chem. 277, 43399 -43409
  34. de Bueger, M., Bakker, A., Van Rood, J. J., Van der Woude, F., and Goulmy, E. (1992) J. Immunol. 149, 1788 -1794
  35. Pierce, R. A., Field, E. D., Mutis, T., Golovina, T. N., Von Kap-Herr, C., Wilke, M., Pool, J., Shabanowitz, J., Pettenati, M. J., Eisenlohr, L. C., Hunt, D. F., Goulmy, E., and Engelhard, V. H. (2001) J. Immunol. 167, 3223-3230
  36. Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., Cooke, M. P., Walker, J. R., and Hogenesch, J. B. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 6062-6067
  37. Tang, N., and Ostap, E. M. (2001) Curr. Biol. 11, 1131-1135
  38. Cronan, J. E. (2003) Annu. Rev. Microbiol. 57, 203-224
  39. Pearson, M. A., Reczek, D., Bretscher, A., and Karplus, P. A. (2000) Cell 101, 259 -270
  40. Lemmon, M. A. (2004) Biochem. Soc. Trans. 32, 707-711
  41. Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B., and Amzel, L. M. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 16996 -17001
  42. Baraldi, E., Djinovic Carugo, K., Hyvo ¨nen, M., Surdo, P. L., Riley, A. M., Potter, B. V., O'Brien, R., Ladbury, J. E., and Saraste, M. (1999) Structure 7, 449 -460
  43. Ferguson, K. M., Kavran, J. M., Sankaran, V. G., Fournier, E., Isakoff, S. J., Skolnik, E. Y., and Lemmon, M. A. (2000) Mol. Cell 6, 373-384
  44. Lietzke, S. E., Bose, S., Cronin, T., Klarlund, J., Chawla, A., Czech, M. P., and Lambright, D. G. (2000) Mol. Cell 6, 385-394