Path and trajectory diversity: Theory and algorithms (original) (raw)

Planning High-Level Paths in Hostile, Dynamic, and Uncertain Environments

Journal of Artificial Intelligence Research

This paper introduces and studies a graph-based variant of the path planning problem arising in hostile environments. We consider a setting where an agent (e.g. a robot) must reach a given destination while avoiding being intercepted by probabilistic entities which exist in the graph with a given probability and move according to a probabilistic motion pattern known a priori. Given a goal vertex and a deadline to reach it, the agent must compute the path to the goal that maximizes its chances of survival. We study the computational complexity of the problem, and present two algorithms for computing high quality solutions in the general case: an exact algorithm based on Mixed-Integer Nonlinear Programming, working well in instances of moderate size, and a pseudo-polynomial time heuristic algorithm allowing to solve large scale problems in reasonable time. We also consider the two limit cases where the agent can survive with probability 0 or 1, and provide specialized algorithms to de...

Towards Efficient Selection of Activity Trajectories based on Diversity and Coverage

Proceedings of the AAAI Conference on Artificial Intelligence

With the prevalence of location based services, activity trajectories are being generated at a rapid pace. The activity trajectory data enriches traditional trajectory data with semantic activities of users, which not only shows where the users have been, but also the preference of users. However, the large volume of data is expensive for people to explore. To address this issue, we study the problem of Diversity-aware Activity Trajectory Selection (DaATS). Given a region of interest for a user, it finds a small number of representative activity trajectories that can provide the user with a broad coverage of different aspects of the region. The problem is challenging in both the efficiency of trajectory similarity computation and subset selection. To tackle the two challenges, we propose a novel solution by: (1) exploiting a deep metric learning method to speedup the similarity computation; and (2) proving that DaATS is an NP-hard problem, and developing an efficient approximation a...

Speculative Path Planning

2021

Parallelization of A* path planning is mostly limited by the number of possible motions, which is far less than the level of parallelism that modern processors support. In this paper, we go beyond the limitations of traditional parallelism of A* and propose Speculative Path Planning to accelerate the search when there are abundant idle resources. The key idea of our approach is predicting future state expansions relying on patterns among expansions and aggressively parallelize the computations of prospective states (i.e. pre-evaluate the expensive collision checking operation of prospective nodes). This method allows us to maintain the same search order as of vanilla A* and safeguard any optimality guarantees. We evaluate our method on various configurations and show that on a machine with 32 physical cores, our method improves the performance around 11x and 10x on average over counterpart single-threaded and multi-threaded implementations respectively. The code to our paper can be ...

Trajectory-aware Lowest-cost Path Selection: A Summary of Results

Proceedings of the 16th International Symposium on Spatial and Temporal Databases, 2019

The trajectory-aware lowest-cost path selection problem aims to find the lowest-cost path using trajectory data. Trajectory data is valuable since it carries information about travel cost along paths, and also reflects travelers' routing preference. Path-centric travel cost estimation models using trajectory data grows popular recently, which considers the auto-correlation of the energy consumption on different segments of a path. However, path-centric models are more computationally expensive than edge-centric models. The main challenge of this problem is that the travel cost of every candidate path explored during the process of searching for the lowest-cost path need to be estimated, resulting in high computational cost. The current path selection algorithms that use path-centric cost estimation models still follow the pattern of "path + edge" when exploring candidate paths, which may result in redundant computation. We introduce a trajectory-aware graph model in wh...