Intraocular Lens Adsorbome: a Proteomic Study of Adsorbed Proteins onto Acrylic Materials and Its Implication in Secondary Cataract (original) (raw)
Abstract
The intraocular lens (IOL) is a polymer implant designed to replace the natural lens after cataract surgery. When the implant is introduced into the lens capsule, the polymer starts to interact with the aqueous humour and the exchange of molecules between the solid and the liquid begins. The nature of exchange in water, ions, and biomolecules may result in several postoperative complications including glistening, calcification, and posterior capsular opacification. The posterior capsular opacification (PCO, also called “Secondary Cataract”) is raised from the over-growth of residual lens epithelial cells. The first step of the over-growth process of the cells is their adhesion to the deposited biomolecules, such as proteins involved in extra-cellular matrices. The purpose of this study is to identify the principal proteins adsorbed onto the acrylic polymers by mass spectrometry. The concept of adsorbome is to generate a list of adsorbed proteins to the hydrophilic and hydrophobic polymers, and then compare the difference to the original component of aqueous humour in order to see the affinity of individual protein to each material. Two kinds of hydrophilic and two kinds of hydrophobic acrylic polymers were tested for their adsorbomes by treating them with an aqueous humour analogue and the major adsorbed proteins were identified by mass spectrometry. Interestingly, the hydrophilic acrylic polymer shows a relative lower protein adsorption rate but shows a higher incidence of secondary cataract. This phenomenon implies the adsorbed proteins play a crucial role in progress of secondary cataract
Dimitriya Bozukova hasn't uploaded this paper.
Let Dimitriya know you want this paper to be uploaded.
Ask for this paper to be uploaded.