Detection of Single Quantum Dots in Model Systems with Sheet Illumination Microscopy (original) (raw)

High-contrast single-particle tracking by selective focal plane illumination microscopy

Optics Express, 2008

Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 mm within the specimen with an excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular diffusion and interactions in complex biological systems.

Tracking bio‐molecules in live cells using quantum dots

2008

Abstract Single particle tracking (SPT) techniques were developed to explore bio-molecules dynamics in live cells at single molecule sensitivity and nanometer spatial resolution. Recent developments in quantum dots (Qdots) surface coating and bio-conjugation schemes have made them most suitable probes for live cell applications. Here we review recent advancements in using quantum dots as SPT probes for live cell experiments.(© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Light Sheet Microscopy for Single Molecule Tracking in Living Tissue

PLoS ONE, 2010

Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 mm within the specimen with an excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular diffusion and interactions in complex biological systems.

Compact and blinking-suppressed quantum dots for single-particle tracking in live cells

The journal of physical chemistry. B, 2014

Quantum dots (QDs) offer distinct advantages over organic dyes and fluorescent proteins for biological imaging applications because of their brightness, photostability, and tunability. However, a major limitation is that single QDs emit fluorescent light in an intermittent on-and-off fashion called "blinking". Here we report the development of blinking-suppressed, relatively compact QDs that are able to maintain their favorable optical properties in aqueous solution. Specifically, we show that a linearly graded alloy shell can be grown on a small CdSe core via a precisely controlled layer-by-layer…

Three-dimensional single molecule tracking of quantum-dot labeled antibody molecules using multifocal plane microscopy

2010

Single molecule tracking in three dimensions (3D) in a live cell environment promises to reveal important new insights into cell biological mechanisms. However, classical microscopy techniques suffer from poor depth discrimination which severely limits single molecule tracking in 3D with high temporal and spatial resolution. We introduced a novel imaging modality, multifocal plane microscopy (MUM) for the study of subcellular dynamics in 3D. We have shown that MUM provides a powerful approach with which single molecules can be tracked in 3D in live cells. MUM allows for the simultaneous imaging at different focal planes, thereby ensuring that trajectories can be imaged continuously at high temporal resolution. A critical requirement for 3D single molecule tracking as well as localization based 3D super-resolution imaging is high 3D localization accuracy. MUM overcomes the depth discrimination problem of classical microscopy based approaches and supports high accuracy 3D localization of singe molecule/particles. In this way, MUM opens the way for high precision 3D single molecule tracking and 3D super-resolution imaging within a live cell environment. We have used MUM to reveal complex intracellular pathways that could not be imaged with classical approaches. In particular we have tracked quantum dot labeled antibody molecules in the exo/endocytic pathway from the cell interior to the plasma membrane at the single molecule level. Here, we present a brief review of these results.

Single-molecule measurements with a single quantum dot

Chemical record (New York, N.Y.), 2007

Recent progress of quantum dot (QD) applications in single-molecule measurements are reviewed in this paper. Bright fluorescence and anti-photobleaching properties of QDs have explored the way to conduct long-time trajectory tracking of transmembrane proteins both in vitro and in vivo. Coupled with diversities of chemical and biochemical modifications of QD surfaces, their application fields are expanding to multidiscipline fields including imaging on the basis of a single molecule. Currently, molecular interactions and conformational changes on the QD surface can be detected at a single-molecule level. These expansions of application fields also involve toxicity problems in cells since most commercially available QDs consist of cadmium selenide or cadmium telluride, which are inherently toxic. For widespread applications of QDs including in vivo and therapeutic use in place of current organic fluorophore, cytotoxicity is discussed as well in this paper. 10.1002/tcr.20128.

Highly inclined thin illumination enables clear single-molecule imaging in cells

Nature Methods, 2008

We describe a simple illumination method of fluorescence microscopy for molecular imaging. Illumination by a highly inclined and thin beam increases image intensity and decreases background intensity, yielding a signal/background ratio about eightfold greater than that of epi-illumination. A high ratio yielded clear single-molecule images and three-dimensional images using cultured mammalian cells, enabling one to visualize and quantify molecular dynamics, interactions and kinetics in cells for molecular systems biology.

Confocal, Three-Dimensional Tracking of Individual Quantum Dots in High-Background Environments

Analytical Chemistry, 2008

We demonstrate a custom confocal fluorescence-microscope that is capable of tracking individual quantum dots undergoing three dimensional Brownian motion (diffusion coefficient ~0.5 µm 2 /s) in environments with a signal-to-background ratio as low as 2:1, significantly worse than observed in a typical cellular environment. By utilizing a pulsed excitation source and time-correlated single photon counting, the time-resolved photon stream can be used to determine changes in the emission lifetime as a function of position and positively identify single quantum dots via photonpair correlations. These results indicate that this microscope will be capable of following protein and RNA transport throughout the full 3 dimensional volume of a live cell for durations up to 15 seconds.