Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma (original) (raw)

Glioma and the Gut-Brain Axis: Opportunities and Future Perspectives

Neuro-Oncology Advances

The gut-brain axis has presented a valuable new dynamic in the treatment of cancer and CNS diseases. However, little is known about the potential role of this axis in neuro-oncology. The goal of this review is to highlight potential implications of the gut-brain axis in neuro-oncology, in particular gliomas, and future areas of research. The gut-brain axis is a well-established biochemical signaling axis that has been associated with various CNS diseases. In neuro-oncology, recent studies have described gut microbiome differences in tumor-bearing mice and glioma patients compared to controls. These differences in the composition of the microbiome are expected to impact the metabolic functionality of each microbiome. The effects of antibiotics on the microbiome may affect tumor growth and modulate the immune system in tumor-bearing mice. Preliminary studies have shown that the gut microbiome might influence PD-L1 response in glioma-bearing mice, as previously observed in other non-CN...

Late-Stage Glioma Is Associated with Deleterious Alteration of Gut Bacterial Metabolites in Mice

Metabolites, 2022

Brain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum. By performing cecal content transfer experiments, we further show that cancer-associated alteration in cecal metabolites is involved in end-stage disease progression. Antibiotic treatment results in a slight but significant delay in mice death and a shift in the proportion of myeloid cells in the brain tumor environment. This work rationally considers microbiota modulating strategies in the clinical management of patients with late-stage glioma.

A Root in Synapsis and the Other One in the Gut Microbiome-Brain Axis: Are the Two Poles of Ketogenic Diet Enough to Challenge Glioblastoma?

Frontiers in Nutrition

Glioblastoma is the most frequent and aggressive brain cancer in adults. While precision medicine in oncology has produced remarkable progress in several malignancies, treatment of glioblastoma has still limited available options and a dismal prognosis. After first-line treatment with surgery followed by radiochemotherapy based on the 2005 STUPP trial, no significant therapeutic advancements have been registered. While waiting that genomic characterization moves from a prognostic/predictive value into therapeutic applications, practical and easy-to-use approaches are eagerly awaited. Medical reports on the role of the ketogenic diet in adult neurological disorders and in glioblastoma suggest that nutritional interventions may condition outcomes and be associated with standard therapies. The acceptable macronutrient distribution of daily calories in a regular diet are 45–65% of daily calories from carbohydrates, 20–35% from fats, and 10–35% from protein. Basically, the ketogenic diet...

Gut microbiota alterations affect glioma growth and innate immune cells involved in tumor immunosurveillance in mice

European Journal of Immunology

Glioma is a CNS tumor with few therapeutic options. Recently, host microbiota has been involved in the immune modulation of different tumors, but no data are available on the possible effects of the gut-immune axis on brain tumors. Here, we investigated the effect of gut microbiota alteration in a syngeneic (GL261) mouse model of glioma, treating mice with two antibiotics (ABX) and evaluating the effects on tumor growth, microbe composition, natural killer (NK) cells and microglia phenotype. We report that ABX treatment (i) altered the intestinal microbiota at family level, (ii) reduced cytotoxic NK cell subsets, and (iii) altered the expression of inflammatory and homeostatic proteins in microglia. All these findings could contribute to the increased growth of intracranial glioma that was observed after ABX treatment. These results demonstrate that chronic ABX administration alters microbiota composition and contributes to modulate brain immune state paving the way to glioma growth.

Principles and clinical implications of the brain-gut-enteric microbiota axis

Nature reviews. Gastroenterology & hepatology, 2009

While bidirectional brain-gut interactions are well known mechanisms for the regulation of gut function in both healthy and diseased states, a role of the enteric flora--including both commensal and pathogenic organisms--in these interactions has only been recognized in the past few years. The brain can influence commensal organisms (enteric microbiota) indirectly, via changes in gastrointestinal motility and secretion, and intestinal permeability, or directly, via signaling molecules released into the gut lumen from cells in the lamina propria (enterochromaffin cells, neurons, immune cells). Communication from enteric microbiota to the host can occur via multiple mechanisms, including epithelial-cell, receptor-mediated signaling and, when intestinal permeability is increased, through direct stimulation of host cells in the lamina propria. Enterochromaffin cells are important bidirectional transducers that regulate communication between the gut lumen and the nervous system. Vagal, a...

Special Issue: Microbiota–Gut–Brain Axis

Microorganisms

There is emerging evidence that human health and disease are modulated by the microbiota and their various metabolites, formed through intestinal and gut bacterial metabolism [...]

Current Paradigms to Explore the Gut Microbiota Linkage to Neurological Disorders

It has been suggested that an intricate communication link exists between the gut microbiota and the brain and its ability to modulate behaviour of an individual governing homeostasis. Metabolic activity of the microbiota is considered to be relatively constant in healthy individuals, despite diff erences in the composition of microbiota. The metabolites produced by gut microbiota and their homeostatic balance is often perturbed as a result of neurological complications. Therefore, it is of paramount importance to explore the link between gut microbiota and brain function and behaviour through neural, endocrine, and immune pathways. This current review focusses on the impact of altered gut microbiota on brain functions and how microbiome modulation by use of probiotics, prebiotics, and synbiotics might prove benefi cial in the prevention and/or treatment of neurological disorders. It is important to carefully understand the complex mechanisms underlying the gut-brain axis so as to use the gut microbiota as a therapeutic intervention strategy for neurological disorders.

The progress of gut microbiome research related to brain disorders

Journal of Neuroinflammation, 2020

There is increasing evidence showing that the dynamic changes in the gut microbiota can alter brain physiology and behavior. Cognition was originally thought to be regulated only by the central nervous system. However, it is now becoming clear that many non-nervous system factors, including the gut-resident bacteria of the gastrointestinal tract, regulate and influence cognitive dysfunction as well as the process of neurodegeneration and cerebrovascular diseases. Extrinsic and intrinsic factors including dietary habits can regulate the composition of the microbiota. Microbes release metabolites and microbiota-derived molecules to further trigger host-derived cytokines and inflammation in the central nervous system, which contribute greatly to the pathogenesis of host brain disorders such as pain, depression, anxiety, autism, Alzheimer’s diseases, Parkinson’s disease, and stroke. Change of blood–brain barrier permeability, brain vascular physiology, and brain structure are among the ...