Winter melt conditions of the inland ice cap on King George Island, Antarctic Peninsula (original) (raw)

The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP) which is among the fastest warming regions on Earth. Surface air temperature increases (~3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological dataset for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, glacier ice temperatures in profile with a fully equipped automatic weather station as well as snow accumulation and ablation measurements on the Warszawa Icefield, since November 2010 and ongoing. In combination with long-term synoptic datasets (40 and 10 years, respectively) and atmospheric circulation indices datasets, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed a positive trend of 5 K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a negative trend in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. A revision of spatial and seasonal changes in adiabatic air temperature lapse rates reveals the high sensitivity of the upper ice cap to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns especially during winter glacial mass accumulation periods. The increased mesocyclonic activity during the winter time in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of long-term change in large-scale atmospheric circulation and variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI. Supplementary data are available at http://dx.doi.org/10.1594/PANGAEA.848704 Zusammenfassung: Die Südshetland-Inseln befinden sich an der nördlichen Spitze der Antarktischen Halbinsel, welche weltweit zu den Regionen zählt, die am stärksten von der globalen Erwärmung betroffen sind. Beträchtliche Änderungen in der Umwelt sind die Konsequenz dieser Erwärmung. Außergewöhnliche Änderungsraten in der bodennahen Lufttemperatur (~3 K in 50 Jahren) gehen einher mit dem Rückzug von Gletscherfronten, der Zunahme von Gletscherschmelze, einem Absenken der Eisoberflächen und der Desintegration von Eisschelfen. Wir haben für die King George Insel/Isla 25 de Mayo (KGI), der größten der Südshetland Inseln, einen einzigartigen Datensatz zusammen getragen. Dieser beinhaltet zeitlich hochaufgelöste und räumliche Messungen von oberflächennaher Lufttemperatur, Windrichtungen und-geschwindigkeiten, Profile von Eistemperaturen mit einer voll ausgestatteten automatischen Wetterstation sowie Messungen von Schnee Akkumulation und Ablation auf dem Warschauer Eisfeld von November 2010 an und andauernd. In Verbindung mit langzeitlichen synoptischen Datensätzen (40 Jahre von 6-stündlichen Messungen) und Datensätzen von atmosphärischen Zirkulations-Indizes, untersuchen wir die klimatologischen Treiber für die Gletscherschmelze-Prozesse und die Vulnerabilität des Inland-Eisschildes mit Schwerpunkt auf den winterlichen Schmelzperioden und Luftdruck-Anomalien. Die Analyse zeigt einen positiven Trend von 5 K über 4 Dekaden in den Tagesminima der Lufttemperatur für die Wintermonate, welche die publizierten Trends der annualen Mittelwerte klar übersteigt, in Verbindung mit einem negativen Trend im monatlichen Mittel des barometrischen Luftdrucks auf Meeresniveau. Diese Änderungen gehen einher mit einem positiven Trend des Southern Annular Mode (SAM) Index, welcher ein Maß für die Stärke und die Ausdehnung des Antarktischen Vortex ist. Wir verbinden diese Beobachtungen mit einer höheren Frequenz von Tiefdruckgebieten, die im Süd-Winter auf die Südshetland-Inseln treffen und warme, feuchte Luftmassen aus den niedrigeren Breiten bringen. Durch seine Exposition ist die Eiskappe von KGI besonders empfindlich gegenüber Änderungen in der winterlichen Akkumulationsperiode von Gletschermassen. Eine Überprüfung der saisonalen und räumlichen Variabilität der Lufttemperaturgradienten zeigen Vol. 69 • No. 4 eine höhere Sensitivität des oberen Gletschers gegenüber Zirkulation der freien Atmosphäre und synoptischen Einflüssen insbesondere während der winterlichen Akkumulationsperiode von Gletschermassen. Oberflächennahe Lufttemperaturgradienten zeigen eine hohe Streuung in Wintermonaten (Standardabweichungen bis zu ±1.0 K/100 m) und eine ausgeprägte räumliche Variabilität, welche den Einfluss der synoptischen Wetterphänomene widerspiegelt. Die verstärkte zyklonische Aktivität im Forschungsgebiet in der Winterzeit resultiert in der Advektion feuchter, warmer Luft mit Regen und erhöhten Temperaturen in die Region, so dass sich regelmäßig winterliche Phasen mit Schmelzbedingungen einstellen. In dieser Publikation untersuchen wir den Einfluss von großskaligen und klimatischen Änderungen auf die bodennahe atmosphärische Grenzschicht und in Gletschermassen-Akkumulation des höher gelegenen Eisschildes während der Wintermonate. Die hier publizierten Daten sind verfügbar unter http://dx.