Supplementary material to "The Mid Atlantic Appalachian Orogen Traverse: A Comparison of Virtual and On-Location Field-Based Capstone Experiences" (original) (raw)
Related papers
Virtual Field Guides are a way for educators to tackle the growing issue of funding pressures in areas of higher education, such as geography. Virtual Field Guides are however underutilised and can offer students a different way of learning. Virtual Field Guides have many benefits to students, such as being more inclusive, building student skills and confidence in a controlled environment pre fieldtrip and can increase engagement in the topic studied. There are also benefits to the educator, such as reduced cost, more efficient students on fieldwork tasks and the ability to tailor and update their field guides to suit their needs. However there are drawbacks in the challenge of creation and their outcome as educational standalone tools. This paper reviews the literature around the benefits and draw backs to the creation and incorporation of virtual field guides in geoscience education.
Virtual field trips in tertiary science
Field trips are one of the most critical pieces of learning for students in sciences like geology, biology, and geography. Virtual field trips (VFT) are being increasingly considered as sophisticated and effective forms of teaching, especially with the rise of new technologies and the growing demand for more inclusive classroom environments. This research developed a virtual field trip for Tertiary students in an introductory-level geology course (GEOL 113: Environmental Geohazards) at the University of Canterbury. This initiative was in partnership with LEARNZ – a highly esteemed virtual fieldtrip team run by CORE Education that creates successful VFTs for Primary and Secondary students in New Zealand. Key components of the Tertiary VFT include a student acting as the virtual field trip teacher interviewing experts and leading the field trip, web-based background material, online assessment, and photos. In two successive academic years, students participated in the VFT during lectures and as pre class assignments prior to a one-day earthquake hazards workshop. In 2016, the virtual field trip used the LEARNZ web platform and occurred synchronously with the class; in 2017 the virtual fieldtrip reused the video, images and word documents from the previous year with the addition of a Google Earth component and with no reliance on the LEARNZ web platform. The goals of the trip were designed to prepare students for the earthquake hazards workshop, in which students analysed earthquake impacts over varying timescales and then applied that knowledge to develop strategies for the recovery of three crucial industries (dairy, mining, or tourism) on the West Coast of New Zealand’s South Island. In both years, number of clicks data showed that students interacted with online material far more during this week of the course than any other. Following the synchronous version in 2016, the students who were surveyed reported (1) they enjoyed the trip, (2) they found background material useful for preparation for the trip and the workshop, and (3) the additional work was at the appropriate level. Despite predominantly positive responses from the students, we experienced some negative feedback from participating staff mainly associated with stress and technical difficulties in running the synchronous VFT. With the asynchronous trip in 2017, staff reported a highly positive overall experience, with a perceived enhanced interaction with class during lecture time, and an increased and enhanced engagement with course material outside of class. The student survey again showed that the majority of students surveyed enjoyed the virtual fieldtrip, and that it was useful preparation for the workshop. Additionally, they reported an improved link between earth processes and society, which was a key overarching aim for the course. We propose that the synchronous version poses more excitement and immersion in the field environment, whereas the reuse of the asynchronous version increases the utility (and hence value for money) of the trip, and minimises technical difficulties and lecturer stress. Additionally, re-using the material in the asynchronous version offered opportunities to improve and supplement the past content, such as the incorporation of following an annotated trip path in Google Earth. As recommendations for others interested in developing virtual fieldtrips, we report that the design of a virtual fieldtrip should include (1) Goal-aligned content and assessment for both practice and marks, (2) a student and instructor experience that is authentic and flexible to both the people and the place. We suggest that these aims can be achieved whatever the budget or timeframe and make our material freely available at https://serc.carleton.edu/index.html
The Appalachian Geo-STEM Camp: Learning about Geology through Experiential Adventure Recreation
2019
The inaugural Appalachian Geo-STEM Camp (AGC) was a partnership between West Virginia University (WVU), the U.S. Geological Survey (USGS) and the West Virginia Geological and Economic Survey (WVGES). Designed to engage high school students in geoscience-oriented Science, Technology, Engineering and Mathematics (STEM) activities through adventure-based outdoor recreation, the inaugural AGC took place in June 2018, with its base operations at the WVU Natural Resources Center (NRC), located northeast of Morgantown, West Virginia. The goals of the AGC are to increase the knowledge of the teenaged campers about the geological formations and biodiversity in the region, to acquaint them with geologic mapping technology used by USGS, WVGES, and WVU, and to foster interest in STEM-based careers. Nine students participated, with a cadre from the USGS, WVGES, and WVU teaching lessons in local geology and ecology. Inaugural-year efforts were focused on development and logistics of the camp and what activities best complimented the STEM research. Post-evaluations by the participants were generally favorable. Year-two goals are to fully develop a curriculum and conduct a thorough pre-camp and post-camp participant survey to quantify learning objectives and guide the sustainability of the effort.