GLP-101: A Diabetes Educator’s Guide to Glucagon-Like-Peptide-1 Receptor Agonists (original) (raw)
Related papers
Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists
Diabetes Therapy, 2015
Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) are useful tools for treating type 2 diabetes mellitus. In their recent position statement, the American Diabetes Association and European Association for the Study of Diabetes recommend GLP1-RAs as add-on to metformin when therapeutic goals are not achieved with monotherapy, particularly for patients who wish to avoid weight gain or hypoglycemia. GLP1-RAs differ substantially in their duration of action, frequency of administration and clinical profile. Members of this class approved for clinical use include exenatide twice-daily, exenatide once-weekly, liraglutide and lixisenatide once-daily. Recently, two new once-weekly GLP1-RAs have been approved: dulaglutide and albiglutide. This article summarizes properties of short-and long-acting GLP-1 analogs, and provides useful information to help choose the most appropriate compound for individual patients.
Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists
Diabetes, Obesity and Metabolism, 2015
Currently, six glucagon-like peptide-1 receptor agonists (GLP-1RAs) are approved for treating type 2 diabetes. These fall into two classes based on their receptor activation: short-acting exenatide twice daily and lixisenatide once daily; and longer-acting liraglutide once daily, exenatide once weekly, albiglutide once weekly and dulaglutide once weekly. The phase III trial of a seventh GLP-1RA, taspoglutide once weekly, was stopped because of unacceptable adverse events (AEs). Nine phase III head-to-head trials and one large phase II study have compared the efficacy and safety of these seven GLP-1RAs. All trials were associated with notable reductions in glycated haemoglobin (HbA1c) levels, although liraglutide led to greater decreases than exenatide formulations and albiglutide, and HbA1c reductions did not differ between liraglutide and dulaglutide. As the short-acting GLP-1RAs delay gastric emptying, they have greater effects on postprandial glucose levels than the longer-acting agents, whereas the longer-acting compounds reduced plasma glucose throughout the 24-h period studied. Liraglutide was associated with weight reductions similar to those with exenatide twice daily but greater than those with exenatide once weekly, albiglutide and dulaglutide. The most frequently observed AEs with GLP-1RAs were gastrointestinal disorders, particularly nausea, vomiting and diarrhoea. Nauseaoccurred less frequently, however, with exenatide once weekly and albiglutide than exenatide twice daily and liraglutide. Both exenatide formulations and albiglutide may be associated with higher incidences of injection-site reactions than liraglutide and dulaglutide. GLP-1RA use in clinical practice should be customized for individual patients, based on clinical profile and patient preference. Ongoing assessments of novel GLP-1RAs and delivery methods may further expand future treatment options.
Indian Journal of Endocrinology …, 2011
Current treatment strategies in type 2 diabetes mellitus (T2DM) address twin issues of insulin resistance and relative deficiency. Despite the proliferation of newer novel treatment options, majority of people with T2DM do not achieve the glycemic goals and are at risk for serious diabetic complications. Recent advances in diabetes research have revealed the important role of incretin hormones in maintaining glucose control. These findings create a unique platform for newer therapeutic options that improve pancreatic islet function, including insulin secretion by the β-cells and glucagon secretion by the α-cells. Studies have shown that incretin pathways play a role in the progression of T2DM. [1,2] The significant reduction in the incretin effect seen in patients with T2DM has been attributed to several factors, including impaired secretion of glucagonlike peptide-1 (GLP-1), accelerated metabolism of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), and defective responsiveness to both the hormones. [1] Many patients with T2DM also have accelerated gastric emptying that may contribute to deterioration of their glycemic control. [3]
Therapeutics and Clinical Risk Management
Failure of secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) plays a prominent role in type 2 diabetes, and restoration of GLP-1 action is an important therapeutic objective. Although the short duration of action of GLP-1 renders it unsuited to therapeutic use, 2 long-acting GLP-1 receptor agonists, exenatide and liraglutide, represent a significant advance in treatment. In controlled trials, both produce short-term glucose-lowering effects, with the reduction in hemoglobin A(1c) of up to 1.3%. These responses are often superior to those observed with additional oral agents. However, unlike sulfonylureas, thiazolidinediones, or insulin, all of which lead to significant weight gain, GLP-1 receptor agonists uniquely result in long-term weight loss of around 5 kg, and higher doses may enhance this further. Reduction in blood pressure of 2-7 mm Hg also has been observed. Both drugs produce transient mild gastrointestinal side effects; although mild hypoglycemia can occur...
GLP-1 receptor agonists in the treatment of type 2 diabetes: role and clinical experience to date
Postgraduate Medicine
Glucagon-like peptide-1 (GLP-1) is a hormone of the incretin system responsible for a variety of glucoregulatory effects, including glucose-dependent secretion of insulin and inhibition of glucagon release, the effects of which are impaired in people with type 2 diabetes (T2D). Targeting this deficiency using GLP-1 receptor agonists (GLP-1RAs) is a well-established approach in T2D, with over a decade of clinical experience now accrued. This article reviews the evidence for subcutaneous GLP-1RAs and their role in T2D treatment, and explores the rationale for an oral GLP-1RA from a primary care perspective. Clinical trials and real-world studies with subcutaneous GLP-1RAs indicate that these agents have good glycated hemoglobin (HbA 1c)-lowering efficacy, an inherently low potential for hypoglycemia, and reduce body weight. Cardiovascular outcomes trials have established cardiovascular safety, and three GLP-1RAs have been proven to reduce the risk of major adverse cardiovascular events (MACE) in patients with established cardiovascular disease or at high cardiovascular risk. The most common adverse events associated with GLP-1RAs are gastrointestinal effects, which tend to occur soon after initiation and decline over time. T2D treatment guidelines recommend GLP-1RAs as a therapeutic option in various settings, including in those patients: i) not achieving HbA 1c targets after first-line metformin and lifestyle modifications; ii) at high risk of/with established atherosclerotic cardiovascular disease (regardless of HbA 1c ; GLP-1RAs of proven benefit); iii) not achieving HbA 1c targets on basal insulin if not already receiving a GLP-1RA. Despite the known benefits of GLP-1RAs, adherence and persistence rates are suboptimal, potentially due in part to injection-related concerns. With some patients having a preference for oral medications, the development of an oral GLP-1RA is a logical approach to improving treatment options for patients with T2D. Co-formulation of semaglutide with an absorption enhancer has enabled the development and recent approval of the first oral GLP-1RA, oral semaglutide, which has the potential to expand use of GLP-1RAs in clinical practice.
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are well established as effective treatments for patients with type 2 diabetes. GLP-1 RAs augment insulin secretion and suppress gluca-gon release via the stimulation of GLP-1 receptors. Although all GLP-1 RAs share the same underlying mechanism of action, they differ in terms of formulations, administration, injection devices and dosages. With six GLP-1 RAs currently available in Europe (namely, immediate release exenatide, lixisenatide, liraglutide; prolonged-release exenatide, dulaglutide and semaglutide), each with its own characteristics and administration requirements, physicians caring for patients in their routine practice face the challenge of being cognizant of all this information so they are able to select the agent that is most suitable for their patient and use it in an efficient and optimal way. The objective of this review is to bring together practical information on the use of these GLP-1 RAs that reflects their approved use.
Liraglutide: new GLP‐1 analogue for uncontrolled type 2 diabetes
Prescriber, 2009
Liraglutide (Victoza) is a new GLP‐1 analogue given by once‐daily injection for the treatment of type 2 diabetes not controlled by mono‐ or dual therapy with oral agents. In our New products review, Steve Chaplin presents the clinical data relating to its efficacy and adverse effects, and Dr Aftab Ahmad considers its potential place in therapy. Copyright © 2009 Wiley Interface Ltd
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2012
The prevalence of obesity and diabetes continues to rise in the US. Glucagon-like peptide-1 receptor agonist (GLP-1RA) is an effective treatment option for type 2 diabetes mellitus (T2DM) that promotes weight loss. Common and effective treatment options added to metformin therapy (basal insulin, sulfonylureas, and pioglitazone) contribute to weight gain, which makes the addition of GLP-1RAs advantageous. Exenatide was the first agent in this class and has recently been approved for use in combination with insulin glargine by the US Food and Drug Administration and the European Medicines Agency. Until recently, there was a lack of data examining basal insulin combined with these agents. The main purpose of this article is to review the prospective interventional data on the safety and efficacy of GLP-1RAs (exenatide, liraglutide, albiglutide, lixisenatide) combined with basal insulin therapy in nonpregnant adults with T2DM. Databases searched were PubMed, Cochrane Central Register of Controlled Trials and the Database of Systematic Reviews (inception to January 2012). Abstracts presented at relevant diabetes and endocrine meetings from 2009 to 2011 were also reviewed, as were reference lists of identified publications. A total of five studies met the criteria and were included in the review. Data from these studies demonstrated that this combination therapy offers advantages for the treatment of diabetes, such as additional lowering of A1c without major risk for hypoglycemia, lower basal insulin requirements, decreased postprandial glucose levels (with or without fasting plasma glucose decreases), and weight loss, or at the very least, less weight gain. However, the gastrointestinal side effects and high cost of these agents may limit their use. This review demonstrates that adding a GLP-1RA to an existing basal insulin regimen is a reasonable treatment strategy in nonpregnant adult patients with T2DM.