Acquisition of Lower-Limb Motion Characteristics with a Single Inertial Measurement Unit—Validation for Use in Physiotherapy (original) (raw)
Related papers
Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments
Journal of Healthcare Engineering, 2017
The hemiplegic rehabilitation state diagnosing performed by therapists can be biased due to their subjective experience, which may deteriorate the rehabilitation effect. In order to improve this situation, a quantitative evaluation is proposed. Though many motion analysis systems are available, they are too complicated for practical application by therapists. In this paper, a method for detecting the motion of human lower limbs including all degrees of freedom (DOFs) via the inertial sensors is proposed, which permits analyzing the patient’s motion ability. This method is applicable to arbitrary walking directions and tracks of persons under study, and its results are unbiased, as compared to therapist qualitative estimations. Using the simplified mathematical model of a human body, the rotation angles for each lower limb joint are calculated from the input signals acquired by the inertial sensors. Finally, the rotation angle versus joint displacement curves are constructed, and the...
Sensors
The purpose of this research was to determine if the commercially available Perception Neuron motion capture system was valid and reliable in clinically relevant lower limb functional tasks. Twenty healthy participants performed two sessions on different days: gait, squat, single-leg squat, side lunge, forward lunge, and counter-movement jump. Seven IMUs and an OptiTrack system were used to record the three-dimensional joint kinematics of the lower extremity. To evaluate the performance, the multiple correlation coefficient (CMC) and the root mean square error (RMSE) of the waveforms as well as the difference and intraclass correlation coefficient (ICC) of discrete parameters were calculated. In all tasks, the CMC revealed fair to excellent waveform similarity (0.47–0.99) and the RMSE was between 3.57° and 13.14°. The difference between discrete parameters was lower than 14.54°. The repeatability analysis of waveforms showed that the CMC was between 0.54 and 0.95 and the RMSE was le...
Inertial Sensor-Based Lower Limb Joint Kinematics: A Methodological Systematic Review
Sensors
The use of inertial measurement units (IMUs) has gained popularity for the estimation of lower limb kinematics. However, implementations in clinical practice are still lacking. The aim of this review is twofold—to evaluate the methodological requirements for IMU-based joint kinematic estimation to be applicable in a clinical setting, and to suggest future research directions. Studies within the PubMed, Web Of Science and EMBASE databases were screened for eligibility, based on the following inclusion criteria: (1) studies must include a methodological description of how kinematic variables were obtained for the lower limb, (2) kinematic data must have been acquired by means of IMUs, (3) studies must have validated the implemented method against a golden standard reference system. Information on study characteristics, signal processing characteristics and study results was assessed and discussed. This review shows that methods for lower limb joint kinematics are inherently applicatio...
2021
BackgroundThe ability to measure joint kinematics in natural environments over long durations using inertial measurement units (IMUs) could enable at-home monitoring and personalized treatment of neurological and musculoskeletal disorders. However, drift, or the accumulation of error over time, inhibits the accurate measurement of movement over long durations. We sought to develop an open-source workflow to estimate lower extremity joint kinematics from IMU data that was accurate, and capable of assessing and mitigating drift.MethodsWe computed IMU-based estimates of kinematics using sensor fusion and an inverse kinematics approach with a constrained biomechanical model. We measured kinematics for 11 subjects as they performed two 10-minute trials: walking and a repeated sequence of varied lower-extremity movements. To validate the approach, we compared the joint angles computed with IMU orientations to the joint angles computed from optical motion capture using root mean square (RM...
The importance of inertial measurement unit placement in assessing upper limb motion
Medical Engineering & Physics, 2021
Motion analysis using inertial measurement units (IMU) has emerged as an alternative to optical motion capture. However, the validity and reliability of upper limb measurements varies significantly between studies. The objective of this study was to determine how sensor placement affects kinematic output in the assessment of motion of the arm, shoulder, and scapula. IMUs were placed proximally/distally on arms, and medially/laterally on the scapula, in a group of eleven healthy participants, while performing nine different motion tasks. Linear regressions and mixed models analysed how these different sensor placements affected the estimated joint motion by establishing the linear relationship between sensors placed on the same body segment. The placement of sensors affected the measured kinematic output considerably, most prominent affect was seen for sensor placement on scapula during flexion and abduction, and on forearm during pronation/supination. The slope of the linear regression lines was 2.5 during flexion, 2.7 during abduction, and 1.8 for forearm pronation/supination. The results of this study suggest that the forearm sensor should be placed on the dorsal side of the forearm, at the distal end; the upper arm sensor should be placed laterally, on the distal part of the arm; and the sensor on the scapula should be placed cranially, along the spine of scapula.
Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity
Sensors (Basel, Switzerland), 2018
The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater) reliability was fair-to-excellent in all three planes du...
Journal of NeuroEngineering and Rehabilitation, 2014
Background: Several rehabilitation systems based on inertial measurement units (IMU) are entering the market for the control of exercises and to measure performance progression, particularly for recovery after lower limb orthopaedic treatments. IMU are easy to wear also by the patient alone, but the extent to which IMU's malpositioning in routine use can affect the accuracy of the measurements is not known. A new such system (Riablo™, CoRehab, Trento, Italy), using audio-visual biofeedback based on videogames, was assessed against state-of-the-art gait analysis as the gold standard.
PLOS ONE, 2019
3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3˚. The more dynamic task, CMJ, revealed error measures approximately 1˚higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28˚-2.58˚on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87˚-8.27˚). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings.
Indonesian Journal of Electrical Engineering and Computer Science
Straight leg raise rehabilitation exercises (for both lying and seated position) for lower limb injuries play a critical role in terms of stress on joints after the injury. The primary objective of the paper is to find how accurately and efficiently a single and a two IMU sensor-based system could classify SSLR (Seated straight leg raise) and LSLR (Lying straight leg raise) exercises using machine learning. Inertial Measurement Units (IMUs) that include accelerometer and gyroscope were calibrated and tested, individual and combined, for classified seating as well as lying exercise and for different demanded personalities. Individual IMUs achieved about 96 % accuracy in binary classification. However, the combined (two) IMUs achieved about 96.8 % accuracy. The merits of the proposed IMU based sensor system are that it is easy to install, cost effective and very useful for telemedical operations in pandemic situations like COVID19. On the basis of these results, it could be concluded ...