What does spatial alternation tell us about retrosplenial cortex function? (original) (raw)

Testing the importance of the caudal retrosplenial cortex for spatial memory in rats

Behavioural brain research, 2003

Although there is evidence to suggest that the retrosplenial cortex is involved in spatial learning and memory, many lesion studies have left the more caudal part of this region intact so leaving its role untested. In the first experiment, rats with neurotoxic lesions of the caudal half of the retrosplenial cortex (RspC1) were tested on a reference memory task in the water-maze. The RspC1 animals were impaired on initial acquisition although they performed normally on a subsequent probe test. The second experiment looked at working memory in the radial-arm maze and water-maze. Animals with caudal retrosplenial lesions (RspC2) were unimpaired on the acquisition stage of the radial-arm maze task but were impaired when the task involved maze rotation to control for the possible use of intramaze cues. The RspC2 animals also took longer to learn the platform position on a delayed matching-to-place task in the water-maze. These results show a subtle impairment in spatial memory performanc...

The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning

Frontiers in behavioral neuroscience, 2015

The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient...

Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory

Behavioural Brain Research, 2004

The present study: (1) tested the importance of the retrosplenial cortex for learning a specific heading direction and distance and, (2) determined if lesion size could explain apparent inconsistencies in the results of different research groups. Dark agouti rats received either 'complete' cytotoxic retrosplenial cortex lesions or 'standard' lesions, the latter sparing the caudal retrosplenial cortex. Animals were first tested on two versions of a "landmark" task in a water maze. In condition 1 animals could use both heading direction and allocentric position, while in condition 2 only heading direction was effective. In condition 1, animals with complete retrosplenial lesions were impaired by the end of training, their profile of performance being consistent with a failure to use allocentric position information. When the water maze task changed (condition 2) so that allocentric cues became redundant, the animals with complete retrosplenial lesions were able to head in the appropriate direction although they showed longer swim paths. Subsequent testing in the radial-arm maze provided more evidence that retrosplenial lesions can disrupt the use of distal (allocentric) room cues. The impairments seen with retrosplenial lesions were often mild but throughout the study performance of rats with 'complete' lesions was more disrupted than those with 'standard' lesions, who often did not differ from the controls. These findings show that lesion size is a critical factor and may explain why some studies have failed to find comparable deficits after retrosplenial cortex lesions.

Encoding and storage of spatial information in the retrosplenial cortex

Proceedings of the National Academy of Sciences of the United States of America, 2014

The retrosplenial cortex (RSC) is part of a network of interconnected cortical, hippocampal, and thalamic structures harboring spatially modulated neurons. The RSC contains head direction cells and connects to the parahippocampal region and anterior thalamus. Manipulations of the RSC can affect spatial and contextual tasks. A considerable amount of evidence implicates the role of the RSC in spatial navigation, but it is unclear whether this structure actually encodes or stores spatial information. We used a transgenic mouse in which the expression of green fluorescent protein was under the control of the immediate early gene c-fos promoter as well as time-lapse two-photon in vivo imaging to monitor neuronal activation triggered by spatial learning in the Morris water maze. We uncovered a repetitive pattern of cell activation in the RSC consistent with the hypothesis that during spatial learning an experience-dependent memory trace is formed in this structure. In support of this hypo...

Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition

Frontiers in Human Neuroscience, 2014

Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.

Retrosplenial cortex and its role in spatial cognition

Retrosplenial cortex is a region within the posterior neocortical system, heavily interconnected with an array of brain networks, both cortical and subcortical, that is, engaged by a myriad of cognitive tasks. Although there is no consensus as to its precise function, evidence from both human and animal studies clearly points to a role in spatial cognition. However, the spatial processing impairments that follow retrosplenial cortex damage are not straightforward to characterise, leading to difficulties in defining the exact nature of its role. In this article, we review this literature and classify the types of ideas that have been put forward into three broad, somewhat overlapping classes: (1) learning of landmark location, stability and permanence; (2) integration between spatial reference frames; and (3) consolidation and retrieval of spatial knowledge (schemas). We evaluate these models and suggest ways to test them, before briefly discussing whether the spatial function may be a subset of a more general function in episodic memory.

Selective Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Allocentric Performance of the Radial-Arm Maze Task

Behavioral Neuroscience, 2005

The present study provides the 1st report on the effects of selective lesions of the dysgranular portion of the retrosplenial cortex in rats. Excitotoxic lesions of the dysgranular area were sufficient to impair behavior in the radial-arm maze by biasing the strategy used to solve the task. In particular, rats with dysgranular retrosplenial lesions were less reliant on distal visual cues to control performance of a working memory task in the radial-arm maze. Instead, they were more reliant on using a motor turning strategy to solve the task. This change in strategy is consistent with anatomical data showing that the dysgranular region is the primary recipient of visual inputs to the rat retrosplenial cortex.

Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats

Behavioural Brain Research, 2010

The rat retrosplenial cortex comprises two major subregions (granular and dysgranular) that differ in morphology and connectivity. Although the effects of selective dysgranular retrosplenial cortex (area 30) lesions and the effects of selective lesions within separate sub-areas of the granular retrosplenial cortex have been described, the effects of complete granular lesions (area 29) remain unknown. The present study, therefore, contrasted excitotoxic lesions of the total granular retrosplenial cortex with complete retrosplenial cortex lesions (dysgranular plus granular) using two spatial working memory tasks variably sensitive to complete retrosplenial damage. The granular retrosplenial and complete retrosplenial lesion groups were comparably impaired throughout most of radial-arm maze acquisition, including when subsequently challenged by having the maze rotated mid-trial or being tested in the dark. The other test, reinforced spatial alternation in a T-maze, provided a slightly different result as it was the rats with selective granular cortex lesions that were most impaired when the rats were tested in two, parallel mazes (one for the sample run, the other for the test run). These findings reveal the importance of the granular retrosplenial cortex for learning across a variety of different spatial tasks. Combining these findings with the results of previous functional and anatomical studies suggests that the granular and dysgranular retrosplenial subregions function in close conjunction to support spatial learning.

A novel role for the rat retrosplenial cortex in cognitive control

Learning & Memory, 2014

By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first acquired two instrumental conditional discriminations, one auditory and one visual, set in two distinct contexts. As a result, rats were rewarded for pressing either the right or left lever when a particular auditory or visual signal was present. In extinction, rats received compound stimuli that either comprised the auditory and visual elements that signaled the same lever response (congruent) or signaled different lever responses (incongruent) during training. On conflict (incongruent) trials, lever selection by sham-operated animals followed the stimulus element that had previously been trained in that same test context, whereas animals with retrosplenial cortex lesions failed to disambiguate the conflicting response cues. Subsequent experiments demonstrated that this abnormality on conflict trials was not due to a failure in distinguishing the contexts. Rather, these data reveal the selective involvement of the rat retrosplenial cortex in response conflict, and so extend the frontal system underlying cognitive control.