Sustainable diets for the future: can we contribute to reducing greenhouse gas emissions by eating a healthy diet? (original) (raw)
Related papers
Public Health Nutrition, 2016
ObjectiveTo assess the compatibility between reduction of diet-related greenhouse gas emissions (GHGE) and nutritional adequacy, acceptability and affordability dimensions of diet sustainability.DesignDietary intake, nutritional composition, GHGE and prices were combined for 402 foods selected among those most consumed by participants of the Individual National Study on Food Consumption. Linear programming was used to model diets with stepwise GHGE reductions, minimized departure from observed diet and three scenarios of nutritional constraints: none (FREE), on macronutrients (MACRO) and for all nutrient recommendations (ADEQ). Nutritional quality was assessed using the mean adequacy ratio (MAR) and solid energy density (SED).SettingFrance.SubjectsAdults (n1899).ResultsIn FREE and MACRO scenarios, imposing up to 30 % GHGE reduction did not affect the MAR, SED and food group pattern of the observed diet, but required substitutions within food groups; higher GHGE reductions decreased ...
Public Health Nutrition, 2019
ObjectiveTo model dietary changes required to shift the UK population to diets that meet dietary recommendations for health, have lower greenhouse gas emissions (GHGE) and are affordable for different income groups.DesignLinear programming was used to create diets that meet dietary requirements for health and reduced GHGE (57 and 80 % targets) by income quintile, taking account of food budgets and foods currently purchased, thereby keeping dietary change to a minimum.Setting/ParticipantsNutrient composition, GHGE and price data were mapped to 101 food groups in household food purchase data (UK Living Cost and Food Survey (2013), 5144 households).ResultsCurrent diets of all income quintiles had similar total GHGE, but the source of GHGE differed by types of meat and amount of fruit and vegetables. It was possible to create diets with a 57 % reduction in GHGE that met dietary and cost restraints in all income groups. In the optimised diets, the food sources of GHGE differed by income ...
Public Health Nutrition
Objective: To model dietary changes required to shift the UK population to diets that meet dietary recommendations for health, have lower greenhouse gas emissions (GHGE) and are affordable for different income groups. Design: Linear programming was used to create diets that meet dietary requirements for health and reduced GHGE (57% and 80% targets) by income quintile, taking into account food budgets and foods currently purchased, thereby keeping dietary change to a minimum. Subjects: Nutrient composition, GHGE and price data were mapped to 101 food groups in household food purchase data (UK Living Cost and Food Survey (2013), n=5144 households). Results: Current diets of all income quintiles had similar total GHGE, but the source of GHGE differed by types of meat, and amount of fruit and vegetables. It was possible to create diets with a 57% reduction in GHGE that met dietary and cost restraints in all income groups. In the optimised diets, the food sources of GHGE differed by income group due to the cost and keeping the level of deviation from current diets to a minimum. Broadly, the changes needed were similar across all groups; reducing animal-based products and increasing plant-based foods but varied by specific foods. Conclusions: Healthy and lower GHGE diets could be created in all income quintiles but tailoring changes to income groups to minimise deviation may make dietary changes more achievable. Specific attention must be given to interventions and policies to be appropriate for all income groups.
The relative greenhouse gas impacts of realistic dietary choices
Energy Policy, 2012
The greenhouse gas (GHG) emissions embodied in 61 different categories of food are used, with information on the diet of different groups of the population (omnivorous, vegetarian and vegan), to calculate the embodied GHG emissions in different dietary scenarios. We calculate that the embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person À 1 day À 1 , or 2.7 t CO 2 e person À 1 y À 1 . This gives total food-related GHG emissions of 167 Mt CO 2 e (1 Mt¼ 10 6 metric tonnes; CO 2 e being the mass of CO 2 that would have the same global warming potential, when measured over 100 years, as a given mixture of greenhouse gases) for the entire UK population in 2009. This is 27% of total direct GHG emissions in the UK, or 19% of total GHG emissions from the UK, including those embodied in goods produced abroad. We calculate that potential GHG savings of 22% and 26% can be made by changing from the current UK-average diet to a vegetarian or vegan diet, respectively. Taking the average GHG saving from six vegetarian or vegan dietary scenarios compared with the current UK-average diet gives a potential national GHG saving of 40 Mt CO 2 e y À 1 . This is equivalent to a 50% reduction in current exhaust pipe emissions from the entire UK passenger car fleet. Hence realistic choices about diet can make substantial differences to embodied GHG emissions.
Sustainability, 2019
Sustainable diets should not only respect the environment but also be healthy and affordable. However, there has been little work to assess whether real diets can encompass all three aspects. The aim of this study was to develop a framework to quantify actual diet records for health, affordability and environmental sustainability and apply this to UK food purchase survey data. We applied a Life Cycle Assessment (LCA) approach to detailed food composition data where purchased food items were disaggregated into their components with traceable environmental impact data. This novel approach is an improvement to earlier studies in which sustainability assessments were based on a limited number of “food groups”, with a potentially high variation of actual food items within each group. Living Costs and Food Survey data for 2012, 2013 and 2014 were mapped into published figures for greenhouse gas emissions (GHGE, taking into account processing, transport and cooking) and land use, a diet qu...
Environmental Research Letters, 2020
The adoption of healthy diets with low environmental impact has been widely promoted as an important climate change mitigation strategy. Typically, these diets are high in plant-sourced and low in animal-sourced and processed foods. Despite the fact that their environmental impacts vary, they are often referred to as 'sustainable diets'. Here we systematically review the available published evidence on the effect of 'sustainable diets' on environmental footprints and human health. Eight databases (OvidSP-Medline, OvidSP-Embase, EBSCO-GreenFILE, Web of Science Core Collection, Scopus, OvidSP-CAB-Abstracts, OvidSP-AGRIS, and OvidSP-Global Health) were searched to identify literature (published 1999-2019) reporting health effects and environmental footprints of 'sustainable diets'. Available evidence was mapped and pooled analysis was conducted by unique combinations of diet pattern, health and environmental outcome. Eighteen studies (412 measurements) met our inclusion criteria, distinguishing twelve non-mutually exclusive sustainable diet patterns, six environmental outcomes, and seven health outcomes. In 87% of measurements (n = 151) positive health outcomes were reported from 'sustainable diets' (average relative health improvement: 4.09% [95% CI −0.10-8.29]) when comparing 'sustainable diets' to current/baseline consumption patterns. Greenhouse gas emissions associated with 'sustainable diets' were on average 25.8%[95%CI −27.0 to −14.6] lower than current/baseline consumption patterns, with vegan diets reporting the largest reduction in GHG-emissions (−70.3% [95% CI: −90.2 to −50.4]), however, water use was frequently reported to be higher than current/baseline diets. Multiple benefits for both health and the environment were reported in the majority (n = 315[76%]) of measurements. We identified consistent evidence of both positive health effects and reduced environmental footprints accruing from 'sustainable diets'. The notable exception of increased water use associated with 'sustainable diets' identifies that co-benefits are not universal and some trade-offs are likely. When carefully designed, evidence-based, and adapted to contextual factors, dietary change could play a pivotal role in climate change mitigation, sustainable food systems, and future population health.
Nutrients, 2014
Nutrition guidelines now consider the environmental impact of food choices as well as maintaining health. In Australia there is insufficient data quantifying the environmental impact of diets, limiting our ability to make evidence-based recommendations. This paper used an environmentally extended input-output model of the economy to estimate greenhouse gas emissions (GHGe) for different food sectors. These data were augmented with food intake estimates from the 1995 Australian National Nutrition Survey. The GHGe of the average Australian diet was 14.5 kg carbon dioxide equivalents (CO 2 e) per person per day. The recommended dietary patterns in the Australian Dietary Guidelines are nutrient rich and have the lowest GHGe (~25% lower than the average diet). Food groups that made the greatest contribution to diet-related GHGe were red meat (8.0 kg CO 2 e per person per day) and energy-dense, nutrient poor "non-core" foods (3.9 kg CO 2 e). Non-core foods accounted for 27% of the diet-related emissions. A reduction in non-core foods and consuming the recommended serves of core foods are strategies which may achieve benefits for population health and the environment. These data will enable comparisons between changes in dietary intake and GHGe over time, and provide a reference point for diets which meet population nutrient requirements and have the lowest GHGe.
Frontiers in Nutrition, 2020
The aim of this study is to define a healthy and sustainable diet model with low GHGE, fulfilling dietary requirements, and considering current Italian food consumption patterns. Design: A duly designed database was developed, linking food nutritional composition and GHGE based on 921 food items consumed in Italy according to the last national food consumption survey (INRAN-SCAI 2005-2006). Linear programming was used to develop new diet plans separately for males and females, aged 18-60 years (n = 2,098 subjects), in order to minimize GHGE. The program is based on dietary goals and acceptability constraints as well as on 13 nutrient requirement constraints aiming to reach a healthy and acceptable diet for the Italian population. Results: Diet optimization resulted in a nutritionally adequate pattern minimizing GHGE values (4.0 vs. 1.9 kg CO 2 e/day for males and 3.2 vs. 1.6 kg CO 2 e/day for females). In both sexes, the nutrient intake of the optimized diet was at the established lower bound for cholesterol and calcium and at the established upper bound for free sugar and fiber. In males, intake of zinc was at the established lower bound whereas iron was at the established upper bound. Consumption of red meat and fruit and vegetables was at the established lower and upper bound, respectively, in both males and females. Despite the decrease in meat consumption, especially red meat, in the optimized diet with respect to the observed diet, levels of iron intake in females increased by 10% (10.3 vs. 11.3 mg/day) but remained below the adequate intake established in Italian national DRIs. Conclusions: An attainable healthy dietary pattern was developed that would lead to the reduction of GHGE by 48% for males and by 50% for females with respect to current food consumption in the Italian adult population. Health-promoting dietary patterns can substantially contribute to achieve related Sustainable Development Goals.
Dietary changes needed to improve diet sustainability: are they similar across Europe?
European Journal of Clinical Nutrition
Background/objectives It is not known whether dietary changes able to simultaneously achieve nutritional adequacy and reduce diet-related greenhouse gas emissions (GHGE) are similar across Europe when cultural and gender specificities are taken into account. Subjects/methods Starting from each mean observed diet in five European countries (France, UK, Italy, Finland, and Sweden) and for each gender, nutritionally adequate diets departing the least from observed diet were designed with linear programming by applying stepwise 10% GHGE reductions. Other models directly minimized GHGE. Results For most countries and whatever the gender, achieving nutritional adequacy implied between-food-group subtitutions (i.e., replacing items from the sugar/fat/alcohol food-group with items from the fruit and vegetables and starchy foodgroups), but increased GHGE. Once nutritional adequacy was met, to decrease GHGE, the optimization process further induced within-food-groups substitutions that were reinforced by stepwise GHGE reductions. Diet modeling results showed the need for changes in consumption of animal-based products but those changes differed according to country and gender, particularly for fish, poultry, and non-liquid milk dairy. Depending on country and gender, maximal GHGE reductions achievable ranged from 62% to 78% but they induced large departures from observed diets (at least 2.8 kg/day of total absolute weight change) by modifying the quantity of at least 99% of food items. Conclusions Setting nutritional goals with no consideration for the environment may increase GHGE. However, diet sustainability can be improved by substituting food items from the sugar/fat/alcohol food group with fruit, vegetables, and starches, and country-specific changes in consumption of animal-based products. Standardized surveys and individual diet modeling are promising tools for further exploring ways to achieve sustainable diets in Europe.