A Machine Learning Approach for the Classification of Falls and Activities of Daily Living in Agricultural Workers (original) (raw)
Related papers
Evaluation of fall detection classification approaches
IEEE International Conference on Intelligent and Advanced Systems (ICIAS)
As we grow old, our desire for being independence does not decrease while our health needs to be monitored more frequently. Accidents such as falling can be a serious problem for the elderly. An accurate automatic fall detection system can help elderly people be safe in every situation. In this paper a waist worn fall detection system has been proposed. A tri-axial accelerometer (ADXL345) was used to capture the movement signals of human body and detect events such as walking and falling to a reasonable degree of accuracy. A set of laboratory-based falls and activities of daily living (ADL) were performed by healthy volunteers with different physical characteristics. This paper presents the comparison of different machine learning classification algorithms using Waikato Environment for Knowledge Analysis (WEKA) platform for classifying falling patterns from ADL patterns. The aim of this paper is to investigate the performance of different classification algorithms for a set of recorded acceleration data. The algorithms are Multilayer Perceptron, Naive Bayes, Decision tree, Support Vector Machine, ZeroR and OneR. The acceleration data with a total data of 6962 instances and 29 attributes were used to evaluate the performance of the different classification algorithm. Results show that the Multilayer Perceptron algorithm is the best option among other mentioned algorithms, due to its high accuracy in fall detection.
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis , and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Fall Detection and Monitoring using Machine Learning: A Comparative Study
International Journal of Advanced Computer Science and Applications
The detection of falls has emerged as an important topic for the public to discuss because of the prevalence and severity of unintentional falls, particularly among the elderly. A Fall Detection System, known as an FDS, is a system that gathers data from wearable Internet-of-Things (IoT) device and classifies the outcomes to distinguish falls from other activities and call for prompt medical aid in the event of a fall. In this paper, we determine either fall or not fall using machine learning prior to our collected fall dataset from accelerometer sensor. From the acceleration data, the input features are extracted and deployed to supervised machine learning (ML) algorithms namely, Support Vector Machine (SVM), Decision Tree, and Naive Bayes. The results show that the accuracy of fall detection reaches 95%, 97 % and 91% without any false alarms for the SVM, Decision Tree, and Naïve Bayes, respectively.
Detecting Real-Time Fall of Elderly People Using Machine Learning
International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2021
Fall is a significant national health issue for the elderly people, generally resulting in severe injuries when the person lies down on the floor over an extended period without any aid after experiencing a great fall. Thus, elders need to be cared very attentively. A supervised-machine learning based fall detection approach with accelerometer, gyroscope is devised. The system can detect falls by grouping different actions as fall or non-fall events and the care taker is alerted immediately as soon as the person falls. The public dataset SisFall with efficient class of features is used to identify fall. The Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms are employed to detect falls with lesser false alarms. The SVM algorithm obtain a highest accuracy of 99.23% than RF algorithm.
IEEE Access
Fall causes trauma or critical injury among the geriatric population which is a second leading accidental cause of post-injury mortality around the world. It is crucial to keep elderly people under supervision by ensuring proper privacy and comfort. Thus the elderly fall detection and prediction using wearable/ non-wearable sensors become an active field of research. In this work, a novel pipeline for fall detection based on wearable accelerometer data has been proposed. Three publicly available datasets have been used to validate our proposed method, and more than 7700 cross-disciplinary time-series features were investigated for each of the datasets. After following a series of feature reduction techniques such as mutual information, removing highly correlated features using the Pearson correlation coefficient, Boruta algorithm, we have obtained the dominant features for each dataset. Different classical machine learning (ML) algorithms were utilized to detect falls based on the obtained features. For individual datasets, the simple ML classifiers achieved very good accuracy. We trained our pipeline with two of the three datasets and tested with the remaining one dataset until all three datasets were used as the test set to show the generalization capability of our proposed pipeline. A set of 39 high-performing features is selected, and the classifiers were trained with them. For all the cases, the proposed pipeline showed excellent efficiency in detecting falls. This architecture performed better than most of the existing works in all the used publicly available datasets, proving the supremacy of the proposed data analysis pipeline. INDEX TERMS Machine learning, feature selection, activities of daily living, feature extraction, signal magnitude vector.
An Analysis of the Accuracy of Wearable Sensors for Classifying the Causes of Falls in Humans
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011
Falls are the number one cause of injury in older adults. Wearable sensors, typically consisting of accelerometers and/or gyroscopes, represent a promising technology for preventing and mitigating the effects of falls. At present, the goal of such "ambulatory fall monitors" is to detect the occurrence of a fall and alert care providers to this event. Future systems may also provide information on the causes and circumstances of falls, to aid clinical diagnosis and targeting of interventions. As a first step towards this goal, the objective of the current study was to develop and evaluate the accuracy of a wearable sensor system for determining the causes of falls. Sixteen young adults participated in experimental trials involving falls due to slips, trips, and "other" causes of imbalance. Three-dimensional acceleration data acquired during the falling trials were input to a linear discriminant analysis technique. This routine achieved 96% sensitivity and 98% specificity in distinguishing the causes of a falls using acceleration data from three markers (left ankle, right ankle, and sternum). In contrast, a single marker provided 54% sensitivity and two markers provided 89% sensitivity. These results indicate the utility of a three-node accelerometer array for distinguishing the cause of falls.
Background: Falls can cause trauma, disability and death among older people. Ambulatory accelerometer devices are currently capable of detecting falls in a controlled environment. However, research suggests that most current approaches can tend to have insufficient sensitivity and specificity in non-laboratory environments, in part because impacts can be experienced as part of ordinary daily living activities. Method: We used a waist-worn wireless tri-axial accelerometer combined with digital signal processing, clustering and neural network classifiers. The method includes the application of Discrete Wavelet Transform, Regrouping Particle Swarm Optimization, Gaussian Distribution of Clustered Knowledge and an ensemble of classifiers including a multilayer perceptron and Augmented Radial Basis Function (ARBF) neural networks. Results: Preliminary testing with 8 healthy individuals in a home environment yields 98.6% sensitivity to falls and 99.6% specificity for routine Activities of Daily Living (ADL) data. Single ARB and MLP classifiers were compared with a combined classifier. The combined classifier offers the greatest sensitivity, with a slight reduction in specificity for routine ADL and an increased specificity for exercise activities. In preliminary tests, the approach achieves 100% sensitivity on in-group falls, 97.65% on out-group falls, 99.33% specificity on routine ADL, and 96.59% specificity on exercise ADL.
A Comparison of Machine Learning Algorithms for Fall Detection using Wearable Sensors
2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2020
The proportion of people 60 years old and above is expected to double globally to reach 22% by 2050. This creates societal challenges such as the increase of age-related illnesses and the need for caregivers. Falls are a major threat for the elderly, often causing serious injuries especially when the fallen person stays on the ground for a long time without assistance. This paper presents the development of a Fall Detection System (FDS) using an accelerometer combined with a gyroscope worn at the waist. Data come from SisFall, a publicly available dataset containing records of Activities of Daily Living and falls. We compared five Machine Learning algorithms. We first applied preprocessing and a feature extraction stage before using five Machine Learning algorithms, allowing us to compare them. Ensemble learning algorithms such as Random Forest and Gradient Boosting have the best performance, with a Sensitivity and Specificity both close to 99%.
2023
Introduction: The tests used to classify older adults at risk of falls are questioned in literature. Tools from the field of artificial intelligence are an alternative to classify older adults more precisely. Objective: To identify the risk of falls in the elderly through electromyographic signals of the lower limb, using tools from the field of artificial intelligence. Methods: A descriptive study design was used. The unit of analysis was made up of 32 older adults (16 with and 16 without risk of falls). The electrical activity of the lower limb muscles was recorded during the functional walking gesture. The cycles obtained were divided into training and validation sets, and then from the amplitude variable, select attributes using the Weka software. Finally, the Support Vector Machines (SVM) classifier was implemented. Results: A classifier of two classes (elderly adults with and without risk of falls) based on SVM was built, whose performance was: Kappa index 0.97 (almost perfect agreement strength), sensitivity 97%, specificity 100%. Conclusions: The SVM artificial intelligence technique applied to the analysis of lower limb electromyographic signals during walking can be considered a precision tool of diagnostic, monitoring and follow-up for older adults with and without risk of falls.
Fall classification by machine learning using mobile phones
PloS one, 2012
Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls-left and right lateral, forward trips, and backward slips-while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls.