Overarching perspectives of contemporary and future ecosystems in the Arctic Ocean (original) (raw)

Multidisciplinary perspectives on living marine resources in the Arctic

Polar Research

Many areas in the Arctic are vulnerable to the impacts of climate change. We observe large-scale effects on physical, biological, economic and social parameters, including ice cover, species distributions, economic activity and regional governance frameworks. Arctic living marine resources are affected in various ways. A holistic understanding of these effects requires a multidisciplinary enterprise. We synthesize relevant research, from oceanography and ecology, via economics, to political science and international law. We find that multidisciplinary research can enhance our understanding and promote new questions and issues relating to impacts and outcomes of climate change in the Arctic. Such issues include recent insights on changing spawning migrations of the North-east Arctic cod stock that necessitates revisions of socioeconomic estimates of ecosystem wealth in the Barents Sea, better integrated prediction systems that require increased cooperation between experts on climate ...

Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic

Polar Science, 2016

Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARP III), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.

Revisiting the footprints of climate change in Arctic marine food webs: An assessment of knowledge gained since 2010

Frontiers in Marine Science, 2023

In 2011, a first comprehensive assessment of the footprints of climate change on Arctic marine ecosystems (such as altered distribution ranges, abundances, growth and body conditions, behaviours and phenologies, as well as community and regime shifts) was published. Here, we reassess the climate-driven impacts reported since then, to elucidate to which extent and how observed ecological footprints have changed in the following decade (2011 to 2021). In total, 98 footprints have been described and analysed. Most of those impacts reported in the 2011 assessment are reconfirmed and can, hence, be assumed as continuing trends. In addition, novel footprints (behavioural changes, diet changes, altered competition and pathogen load) are described. As in 2011, most reported footprints are related to changes in distribution ranges, abundances, biomass and production. Range shifts have mostly been observed for fish species, while behavioural changes have mainly been reported for mammals. Primary production has been observed to further increase in Arctic seas. The footprints on pelagic herbivores, particularly the key species Calanus spp., are less clear. In comparison to 2011, more complex, cascading effects of climate change, such as increased bowhead whale body conditions due to increased primary production, have been reported. The observed footprints, and the trends that they indicate, strongly suggest that due to further northward range shifts of sub-Arctic and boreal species Arctic seas are likely to experience increasing species richness in the future. However, a tipping point may be reached, characterized by subsequent biodiversity decline, when Arctic-endemic species will go extinct as ocean warming and/or acidification will exceed their physiological adaptation capacity. Furthermore, as invading boreal species have a competitive advantage due to their wider physiological and trophic range, Arctic species abundances are predicted to decrease. Overall, the future Arctic Ocean will very likely experience increasing numbers and intensities of climate-change footprints.

Arctic Ecosystem Integrated Survey (Arctic Eis): Marine ecosystem dynamics in the rapidly changing Pacific Arctic Gateway

Deep Sea Research Part II: Topical Studies in Oceanography, 2017

Arctic Marine Ecosystems are undergoing rapid changes associated with ice loss and surface warming resulting from human activities (IPCC, 2013). The most dramatic changes include an earlier ice retreat and a longer ice-free season, particularly on Arctic inflow shelves such as the Barents Sea in the Atlantic Arctic and the northern Bering Sea and Chukchi Sea in the Pacific Arctic, the two major gateways into the Arctic (