Deep Generative Adversarial Neural Networks for Compressive Sensing MRI (original) (raw)

Deep Generative Adversarial Networks for Compressed Sensing Automates MRI

arXiv (Cornell University), 2017

Magnetic resonance image (MRI) reconstruction is a severely ill-posed linear inverse task demanding time and resource intensive computations that can substantially trade off accuracy for speed in real-time imaging. In addition, state-of-the-art compressed sensing (CS) analytics are not cognizant of the image diagnostic quality. To cope with these challenges we put forth a novel CS framework that permeates benefits from generative adversarial networks (GAN) to train a (low-dimensional) manifold of diagnostic-quality MR images from historical patients. Leveraging a mixture of least-squares (LS) GANs and pixel-wise 1 cost, a deep residual network with skip connections is trained as the generator that learns to remove the aliasing artifacts by projecting onto the manifold. LSGAN learns the texture details, while 1 controls the high-frequency noise. A multilayer convolutional neural network is then jointly trained based on diagnostic quality images to discriminate the projection quality. The test phase performs feed-forward propagation over the generator network that demands a very low computational overhead. Extensive evaluations are performed on a large contrast-enhanced MR dataset of pediatric patients. In particular, images rated based on expert radiologists corroborate that GANCS retrieves high contrast images with detailed texture relative to conventional CS, and pixel-wise schemes. In addition, it offers reconstruction under a few milliseconds, two orders of magnitude faster than state-of-the-art CS-MRI schemes. * The authors are with the Stanford University, Departments of Electrical Engineering 1 , Radiology 2 , Radiation Oncology 3 , and Computer Science 4 .

Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss

IEEE transactions on medical imaging, 2018

Compressed sensing magnetic resonance imaging (CS-MRI) has provided theoretical foundations upon which the time-consuming MRI acquisition process can be accelerated. However, it primarily relies on iterative numerical solvers, which still hinders their adaptation in time-critical applications. In addition, recent advances in deep neural networks have shown their potential in computer vision and image processing, but their adaptation to MRI reconstruction is still in an early stage. In this paper, we propose a novel deep learning-based generative adversarial model, RefineGAN, for fast and accurate CS-MRI reconstruction. The proposed model is a variant of fully-residual convolutional autoencoder and generative adversarial networks (GANs), specifically designed for CS-MRI formulation; it employs deeper generator and discriminator networks with cyclic data consistency loss for faithful interpolation in the given under-sampled -space data. In addition, our solution leverages a chained ne...

DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction

IEEE transactions on medical imaging, 2018

Compressed sensing magnetic resonance imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging-based fast MRI, which utilizes multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning-based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training data sets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN)-based model is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learn...

Hybrid Parallel Imaging and Compressed Sensing MRI Reconstruction with GRAPPA Integrated Multi-loss Supervised GAN

2022

Parallel imaging accelerates the acquisition of magnetic resonance imaging (MRI) data by acquiring additional sensitivity information with an array of receiver coils resulting in reduced phase encoding steps. Compressed sensing magnetic resonance imaging (CS-MRI) has achieved popularity in the field of medical imaging because of its less data requirement than parallel imaging. Parallel imaging and compressed sensing (CS) both speed up traditional MRI acquisition by minimizing the amount of data captured in the k-space. As acquisition time is inversely proportional to the number of samples, the inverse formation of an image from reduced k-space samples leads to faster acquisition but with aliasing artifacts. This paper proposes a novel Generative Adversarial Network (GAN) namely RECGAN-GR supervised with multi-modal losses for de-aliasing the reconstructed image. Methods: In contrast to existing GAN networks, our proposed method introduces a novel generator network namely RemU-Net integrated with dual-domain loss functions including weighted magnitude and phase loss functions along with parallel imaging-based loss i.e., GRAPPA consistency loss. A k-space correction block is proposed as refinement learning to make the GAN network self-resistant to generating unnecessary data which drives the convergence of the reconstruction process faster. Results: Comprehensive results show that the proposed RECGAN-GR achieves a 4 dB improvement in the PSNR among the GAN-based methods and a 2 dB improvement among conventional state-ofthe-art CNN methods available in the literature. Conclusion and significance: The proposed work contributes to significant improvement in the image quality for low retained data leading to 5× or 10× faster acquisition.

Magnetic Resonance Image Reconstruction using Inception-based Convolutional Neural Network

2023

Magnetic resonance imaging (MRI) is one of the best imaging techniques that produce highquality images of objects. The long scan time is one of the biggest challenges in MRI acquisitions. To address this challenge, many researchers have aimed at finding methods to speed up the process. Faster MRI can reduce patient discomfort and motion artifacts. Many reconstruction methods are used in this matter, like deep learning-based MRI reconstruction, parallel MRI, and compressive sensing. Among these techniques, the convolutional neural network (CNN) generates high-quality images with faster scan and reconstruction procedures compared to the other techniques. The Inception module proposed by Google inspires the algorithm of this study for MRI reconstruction. In other words, we introduce a new MRI U-Net modification by using the Inception module. Our method is more flexible and robust compared to the standard U-Net.

A deep error correction network for compressed sensing MRI

BMC Biomedical Engineering, 2020

Background CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality. Results In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental r...

Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review

Bioengineering

Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides excellent soft-tissue contrast and high-resolution images of the human body, allowing us to understand detailed information on morphology, structural integrity, and physiologic processes. However, MRI exams usually require lengthy acquisition times. Methods such as parallel MRI and Compressive Sensing (CS) have significantly reduced the MRI acquisition time by acquiring less data through undersampling k-space. The state-of-the-art of fast MRI has recently been redefined by integrating Deep Learning (DL) models with these undersampled approaches. This Systematic Literature Review (SLR) comprehensively analyzes deep MRI reconstruction models, emphasizing the key elements of recently proposed methods and highlighting their strengths and weaknesses. This SLR involves searching and selecting relevant studies from various databases, including Web of Science and Scopus, followed by a rigorous screening ...

Knowledge-driven deep learning for fast MR imaging: undersampled MR image reconstruction from supervised to un-supervised learning

arXiv (Cornell University), 2024

Deep learning (DL) has emerged as a leading approach in accelerating MR imaging. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MR imaging involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MR imaging along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.

De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates

When sparsely sampled data are used to accelerate magnetic resonance imaging (MRI), conventional reconstruction approaches produce significant artifacts that obscure the content of the image. To remove aliasing artifacts, we propose an advanced convolutional neural network (CNN) called fully dense attention CNN (FDA-CNN). We updated the Unet model with the fully dense connectivity and attention mechanism for MRI reconstruction. The main benefit of FDA-CNN is that an attention gate in each decoder layer increases the learning process by focusing on the relevant image features and provides a better generalization of the network by reducing irrelevant activations. Moreover, densely interconnected convolutional layers reuse the feature maps and prevent the vanishing gradient problem. Additionally, we also implement a new, proficient undersampling pattern in the phase direction that takes low and high frequencies from the k-space both randomly and non-randomly. The performance of FDA-CNN was evaluated quantitatively and qualitatively with three different sub-sampling masks and datasets. Compared with five current deep learning-based and two compressed sensing MRI reconstruction techniques, the proposed method performed better as it reconstructed smoother and brighter images. Furthermore, FDA-CNN improved the mean PSNR by 2 dB, SSIM by 0.35, and VIFP by 0.37 compared with Unet for the acceleration factor of 5.

Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction

Medical & Biological Engineering & Computing, 2020

Compressed Sensing Magnetic Resonance Imaging (CS-MRI) could be considered a challenged task since it could be designed as an efficient technique for fast MRI acquisition which could be highly beneficial for several clinical routines. In fact, it could grant better scan quality by reducing motion artifacts amount as well as the contrast washout effect. It offers also the possibility to reduce the exploration cost and the patient's anxiety. Recently, Deep Learning Neuronal Network (DL) has been suggested in order to reconstruct MRI scans with conserving the structural details and improving parallel imaging-based fast MRI. In this paper, we propose Deep Convolutional Encoder-Decoder architecture for CS-MRI reconstruction. Such architecture bridges the gap between the non-learning techniques, using data from only one image, and approaches using large training data. The proposed approach is based on autoencoder architecture divided into two parts: an encoder and a decoder. The encoder as well as the decoder has essentially three convolutional blocks. The proposed architecture has been evaluated through two databases: Hammersmith dataset (for the normal scans) and MICCAI 2018 (for pathological MRI). Moreover, we extend our model to cope with noisy pathological MRI scans. The normalized mean square error (NMSE), the peak-to-noise ratio (PSNR), and the structural similarity index (SSIM) have been adopted as evaluation metrics in order to evaluate the proposed architecture performance and to make a comparative study with the state-of-the-art reconstruction algorithms. The higher PSNR and SSIM values as well as the lowest NMSE values could attest that the proposed architecture offers better reconstruction and preserves textural image details. Furthermore, the running time is about 0.8 s, which is suitable for real-time processing. Such results could encourage the neurologist to adopt it in their clinical routines.