Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men (original) (raw)

Comparison of the effects of open vs. closed skill exercise on the acute and chronic BDNF, IGF-1 and IL-6 response in older healthy adults

BMC Neuroscience

Background Accumulating evidence shows that physical exercise has a positive effect on the release of neurotrophic factors and myokines. However, evidence regarding the optimal type of physical exercise for these release is still lacking. The aim of this study was to assess the acute and chronic effects of open-skill exercise (OSE) compared to closed-skill exercise (CSE) on serum and plasma levels of brain derived neurotrophic factor (BDNFS, BDNFP), and serum levels of insulin like growth factor 1 (IGF-1), and interleukin 6 (IL-6) in healthy older adults. Methods To investigate acute effects, thirty-eight participants were randomly assigned to either an intervention (badminton (aOSE) and bicycling (aCSE), n = 24, 65.83 ± 5.98 years) or control group (reading (CG), n = 14, 67.07 ± 2.37 years). Blood samples were taken immediately before and 5 min after each condition. During each condition, heart rate was monitored. The mean heart rate of aOSE and aCSE were equivalent (65 ± 5% of h...

Neurobiological markers of exercise-related brain plasticity in older adults

2012

The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF)–putative markers of exercise-induced benefits on brain function.

The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly

Frontiers in behavioral neuroscience, 2015

This study aimed to investigate the effects of a long-term resistance exercise intervention on executive functions in healthy elderly males, and to further understand the potential neurophysiological mechanisms mediating the changes. The study assessed forty-eight healthy elderly males randomly assigned to exercise (n = 24) or control (n = 24) groups. The assessment included neuropsychological and neuroelectric measures during a variant of the oddball task paradigm, as well as growth hormone (GH), insulin-like growth factor-1 (IGF-1), and homocysteine levels at baseline and after either a 12 month intervention of resistance exercise training or control period. The results showed that the control group had a significantly lower accuracy rate and smaller P3a and P3b amplitudes in the oddball condition after 12 months. The exercise group exhibited improved reaction times (RTs), sustained P3a and P3b amplitudes, increased levels of serum IGF-1, and decreased levels of serum homocysteine...

Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men

Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 2008

It is believed that brain derived neurotrophic factor (BDNF) plays an important role in neuronal growth, transmission, modulation and plasticity. Single bout of exercise can increase plasma BDNF concentration [BDNF](p) in humans. It was recently reported however, that elevated [BDNF](p) positively correlated with risk factors for metabolic syndrome and type 2 diabetes mellitus in middle age group of subjects. On the other hand it is well established that endurance training decreases the risk of diabetes and development of metabolic syndrome. In the present study we have examined the effect of 5 weeks of moderate intensity endurance training on the basal and the exercise induced changes in [BDNF](p) in humans. Thirteen young, healthy and physically active men (mean +/- S.E: age 22.7 +/- 0.5 yr, body height 180.2 +/- 1.7 cm, body weight 77.0 +/- 2.5 kg, V(O2max) 45.29 +/- 0.93 ml x kg-1 x min(-1)) performed a five week endurance cycling training program, composed mainly of moderate in...

Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults

NeuroImage, 2016

Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3month aerobic exercise study, forty healthy older humans (60 to 77 years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n = 21) or to a control group (indoor progressive-muscle relaxation/stretching, n = 19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampusdependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.

The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men

Journal of sports science & medicine, 2013

This study examined the combined effects of aerobic exercise intensity and duration on serum brain-derived neurotrophic factor (sBDNF) levels in healthy human adult males aged 18-25 years. Forty five participants were randomly assigned to one of six exercise conditions based on varying intensity (80% or 60% of heart rate reserve, or control) and duration (20 or 40 min). Vigorous (80% heart rate reserve, "Vig") and moderate (60% heart rate reserve, "Mod") exercise was carried out on cycle ergometers. Control subjects remained seated and at rest during the exercise period. Pre- and post-exercise blood draws were conducted and sBDNF measured. Physical exercise caused an average ~ 32% increase in sBDNF levels relative to baseline that resulted in concentrations that were 45% higher than control conditions. Comparing the six conditions, sBDNF levels rose consistently among the four exercise conditions (Vig20 = 26.38 ± 34.89%, Vig40 = 28.48 ± 19.11%, Mod20 = 41.23 ± 59...

The Impact of Physical Exercise on Brain-Derived Neurotrophic Factor (BDNF) Level in Elderly Population

Open Access Macedonian Journal of Medical Sciences

BACKGROUND: Memory function disorder is a major health problem in geriatric patients. Physical exercise has the potency to decrease the incidence of many degenerative and chronic health problem, related to cognitive deterioration (dementia). AIM: This research aimed to observe the effect of physical exercise in various doses and duration on memory function by analysing the role of Brain-Derived Neurotrophic Factor (BDNF) as a regulatory protein affected by exercise. METHODS: This was an analytical observational study with a cohort design. Thirty participants were included in each group, classified as exercise and non-exercise group. The exercise was in the form of jogging for at least fifteen minutes every day. The observation was done for sixty days. Cognitive function assessment was done by using the Mini-Mental State Examination (MMSE) questionnaire. Meanwhile, the BDNF level was assessed by ELISA. Statistical analysis was done using Independent T-test. RESULTS: Exercise group sh...