Chiral Hydrogen Bond Environment Providing Unidirectional Rotation in Photoactive Molecular Motors (original) (raw)
Related papers
Light-driven rotary molecular motors without point chirality: a minimal design
Physical chemistry chemical physics : PCCP, 2017
A fundamental requirement for achieving photoinduced unidirectional rotary motion about an olefinic bond in a molecular motor is that the potential energy surface of the excited state is asymmetric with respect to clockwise and counterclockwise rotations. In most available light-driven rotary molecular motors, such asymmetry is guaranteed by the presence of a stereocenter. Here, we present non-adiabatic molecular dynamics simulations based on multiconfigurational quantum chemistry to demonstrate that this chiral feature is not essential for inducing unidirectional rotary motion in molecules that incorporate a cyclohexenylidene moiety into a protonated Schiff-base framework. Rather, the simulations show that it is possible to exploit the intrinsic asymmetry of the puckered cyclohexenylidene to control the direction of photoinduced rotation.
Journal of the American Chemical Society, 2002
Nine new molecular motors, consisting of a 2,3-dihydro-2-methylnaphtho[2,1-b]thiopyran or 2,3dihydro-3-methylphenanthrene upper part and a (thio)xanthene, 10,10-dimethylanthracene, or dibenzocycloheptene lower part, connected by a central double bond, were synthesized. A single stereogenic center, bearing a methyl substituent, is present in each of the motors. MOPAC93-AM1 calculations, NMR studies, and X-ray analysis revealed that these compounds have stable isomers with pseudoaxial orientation of the methyl substituent and less-stable isomers with pseudoequatorial orientation of the methyl substituent. The photochemical and thermal isomerization processes of the motors were studied by NMR and CD spectroscopy. The new molecular motors all show two cis-trans isomerizations upon irradiation, each followed by a thermal helix inversion, resulting in a 360°rotation around the central double bond of the upper part with respect to the lower part. The direction of rotation is controlled by a single stereogenic center created by the methyl substituent at the upper part. The speed of rotation, governed by the two thermal steps, was adjusted to a great extent by structural modifications, with half-lives for the thermal isomerization steps ranging from t1/2 θ 233-0.67 h. The photochemical conversions of two new motors proceeded with near-perfect photoequilibria of 1:99.
Journal of the American Chemical Society, 2006
The introduction of bulky substituents at the stereogenic center of light-driven second-generation molecular motors results in an acceleration of the speed of rotation. This is due to a more strained structure with elongated CdC bonds and a higher energy level of the ground state relative to the transition state for the rate-limiting thermal isomerization step. Understanding the profound influence that variation of the substituent at the stereogenic center holds over the rotational speed of the light-driven molecular motor has enabled the development of the fastest molecular motor reported thus far.
Light-driven molecular switches and motors
Applied Physics A, 2002
Technology is omnipresent in our modern-day society and it is hard to imagine a world without machines, computers or robots. One of the main current scientific challenges is the bottom-up construction of systems that represent nanosize analogues of switches, devices and motors. Our efforts in this area have focussed on the construction of devices based on sterically overcrowded alkenes. In this paper, we present our ongoing research on the construction of binary molecular switches, which has recently led to genuine molecular motors. The control of chirality in a molecular switching system allows interconversion between molecules of opposite helicity using different wavelengths of light. Such bistable chiral switches are of potential use in optical data storage and processing at the molecular level. The control of molecular chirality is even more subtle in the case of molecular motor systems. The exquisite control of chirality using light as an energy source has resulted in a controlled, repetitive 360 • unidirectional rotation in two generations of molecular motor systems.
An Ultra-fast Surface-bound Photo-active Molecular Motor
We report the synthesis and surface attachment of an ultrafast light-driven rotary molecular motor. Transient absorption spectroscopy revealed that the half-life of the rate determining thermal step of the rotary cycle in solution is 38 ± 1 ns, the shortest yet observed, making this the fastest molecular motor reported. Incorporation of acetylene legs into the structure allowed the motors to be grafted to azide-modified quartz and silicon substrates using the "click" 1,3-dipolar cycloaddition reaction. † Electronic supplementary information (ESI) available. See
An Enantioselective Synthetic Route toward Second-Generation Light-Driven Rotary Molecular Motors
The Journal of Organic Chemistry, 2010
Controlling the unidirectional rotary process of second-generation molecular motors demands access to these motors in their enantiomerically pure form. In this paper, we describe an enantioselective route to three new second-generation light-driven molecular motors. Their synthesis starts with the preparation of an optically active alpha-methoxy-substituted upper-half ketone involving an enzymatic resolution. The subsequent conversion of this ketone to the corresponding hydrazone by treatment with hydrazine led to full racemization. However, conversion to a TBDMS-protected hydrazone by treatment with bis-TBDMS hydrazine, prepared according to a new procedure, proceeds with nearly full retention of the stereochemical integrity. Oxidation of the TBDMS-protected hydrazone and subsequent coupling to a lower-half thioketone followed by recrystallization provided the molecular motors with >99% ee. As these are the first molecular motors that have a methoxy substituent at the stereogenic center, the photochemical and thermal isomerization steps involved in the rotary cycle of one of these new molecules were studied in detail with various spectroscopic techniques.
Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors
Physical Chemistry Chemical Physics, 2009
The combination of a photochemical and a thermal equilibrium in overcrowded alkenes, which is the basis for unidirectional rotation of light-driven molecular rotary motors, is analysed in relation to the actual average rotation rates of such structures. Experimental parameters such as temperature, concentration and irradiation intensity could be related directly to the effective rates of rotation that are achieved in solution by means of photochemical and thermal reaction rate theory. It is found that molecular properties, including absorption characteristics and photochemical quantum yields, are of less importance to the overall rate of rotation than the experimental parameters. This analysis holds considerable implications in the design of experimental conditions for functional molecular systems that will rely on high rates of rotation, and shows that average rotation rates comparable to ATPase or flagella motors are within reach assuming common experimental parameters.
Synthesis of Core-Modified Third-Generation Light-Driven Molecular Motors
The Journal of Organic Chemistry, 2020
The synthesis and characterization of a series of light-driven third-generation molecular motors featuring various structural modifications at the central aromatic core are presented. We explore a number of substitution patterns, such as 1,2dimethoxybenzene, naphthyl, 1,2-dichlorobenzene, 1,1′:2′,1″terphenyl, 4,4″-dimethoxy-1,1':2′,1″-terphenyl, and 1,2-dicarbomethoxybenzene, considered essential for designing future responsive systems. In many cases, the synthetic routes for both synthetic intermediates and motors reported here are modular, allowing for their post-functionalization. The structural modifications introduced in the core of the motors result in improved solubility and a bathochromic shift of the absorption maxima. These features, in combination with a structural design that presents remote functionalization of the stator with respect to the fluorene rotors, make these novel motors particularly promising as light-responsive actuators in covalent and supramolecular materials.