The arithmetic of QM-abelian surfaces through their Galois representations (original) (raw)

Abstract

This note provides an insight to the diophantine properties of abelian surfaces with quaternionic multiplication over number fields. We study the fields of definition of the endomorphisms on these abelian varieties and the images of the Galois representations on their Tate modules. We illustrate our results with an explicit example.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (28)

  1. M. Alsina, P. Bayer, Quaternion orders, Quadratic forms, and Shimura curves, CRM Mono- graph series, 22 (2004), ISBN: 0-8218-3359-6.
  2. A. Brumer, K. Kramer, The conductor of an abelian variety, Compositio Math. 92 (1994), 227-248.
  3. T. Chinburg, E. Friedman, The finite subgroups of maximal arithmetic Kleinian groups, Ann. Inst. Fourier Grenoble 50 (2000), 1765-1798.
  4. L. Dieulefait, Newforms, inner twists and the inverse Galois problem for projective linear groups, J. Th. Nombres Bordeaux 13 (2001), 395-411.
  5. L. Dieulefait, V. Rotger, On abelian surfaces with potential quaternionic multiplication, to appear in Bull. Belg. Math. Soc.
  6. L. Dieulefait, N. Vila, Projective linear groups as Galois groups over Q via modular repre- sentations, J. Symb. Comp. 30 (2000), 799-810.
  7. K. Hashimoto, N. Murabayashi, Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves og genus two, Tôhoku Math. J. 47 (1995), 271-296.
  8. M. Jacobson, Variétés abéliénnes de dimension deux ayant pour algébre de quaternions indéfinie (in russian), Uspekhi Mat. Nauk 29 (1974), 185-186.
  9. S. Johansson, A description of quaternion algebras, preprint.
  10. B.W. Jordan, Points on Shimura curves rational over number fields, J. reine angew. Math. 371 (1986), 92-114.
  11. D. Mumford, Abelian varieties, Tata Institute of Fundamental Research, Bombay, Oxford University Press (1970).
  12. M. Ohta, On ℓ-adic representations of Galois groups obtained from certain two dimensional abelian varieties, J. Fac. Sci. Univ. Tokyo 21 (1974), 299-308.
  13. M. Raynaud, Schémas en groupes de type (p, ..., p), Bull. Soc. Math. France 102 (1974), 241-280.
  14. I. Reiner, Maximal orders, Academic Press, London (1975).
  15. K. A. Ribet, On ℓ-adic representations attached to modular forms, Inventiones Math. 28 (1975), 245-275.
  16. K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Annals Math. 101 (1975), 555-562.
  17. K. A. Ribet, On ℓ-adic representations attached to modular forms II, Glasgow Math. J. 27 (1985), 185-194.
  18. K. A. Ribet, Abelian varieties over Q and modular forms, in Modular curves and abelian varieties, J. Cremona, J.-C. Lario, J. Quer, K. Ribet (eds.), Progress in Mathematics 224, Birkhäuser (2004), 241-261.
  19. K. A. Ribet, Images of semistable Galois representations, Pacific J. Math. 181 (1997).
  20. V. Rotger, Quaternions, polarizations and class numbers, J. Reine Angew. Math. 561 (2003), 177-197.
  21. V. Rotger, Modular Shimura varieties and forgetful maps, Trans. Amer. Math. Soc. 356 (2004), 1535-1550.
  22. V. Rotger, On the field of moduli of quaternionic multiplication on abelian varieties, sub- mitted to publication.
  23. G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Annals Math. 78 (1963), 149-192.
  24. G. Shimura, Construction of class fields and zeta functions of algebraic curves, Annals Math. 85 (1967), 58-159.
  25. G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135-164.
  26. J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Math. 15 (1972), 259-331.
  27. A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure and Ap- plied Algebra 77 (1992), 253-262.
  28. M.F. Vignéras, Arithmétique des algèbres de quaternions, Lect. Notes Math. 800 (1980) Centre de Recerca Matemática, Apartat 50, E-08193 Bellaterra, Spain; Escola Universitària Politècnica de Vilanova i la Geltrú, Av. Víctor Balaguer s/n, E-08800 Vilanova i la Geltrú, Spain E-mail address: LDieulefait@crm.es, vrotger@mat.upc.es