Mapping heterogeneous polarity in multicompartment nanoparticles (original) (raw)

Understanding polarity gradients inside nanomaterials is essential to capture their potential as nanoreactors, catalysts or in drug delivery applications. We propose here a method to obtain detailed, quantitative information on heterogeneous polarity in multicompartment nanostructures. The method is based on a 2-steps procedure, (i) deconvolution of complex emission spectra of two solvatochromic probes followed by (ii) spectrally resolved analysis of FRET between the same solvatochromic dyes. While the first step yields a list of polarities probed in the nanomaterial suspension, the second step correlates the polarities in space. Colocalization of polarities falling within few nanometer radius is obtained via FRET, a process called here nanopolarity mapping. Here, Prodan and Nile Red are tested to map the polarity of a water-dispersable, multicompartment nanostructure, named PluS nanoparticle (NPs). PluS NPs are uniform core-shell nanoparticles with silica cores (diameter ~10 nm) an...