Irreversible Processes: Applications (original) (raw)

UNITEXT for physics, 2019

Abstract

The Onsager symmetry relations are applied to the study of electrokinetic effects and of thermomechanical effects. In the latter case the relation between thermomolecular pressure difference and the heat of transfer is calculated, for comparison, also for Knudsen gases in a classical kinetic model. The characterization of stationary states as states of minimum entropy production are studied. The determination of stationary states, their stability and the principles of Le Chatelier and of Le Chatelier–Braun, find their correct explanation within the context of the thermodynamical theory of stationary states. The model by Prigogine and Waime is presented as an example. Within the theory of fluctuations in an isolated thermodynamical system, the decay of fluctuations are treated with the formalism of linear irreversible processes and the symmetry properties of the linear phenomenological matrix is derived from the postulate of time reversal symmetry for microscopic physics.

Matteo Pierno hasn't uploaded this paper.

Let Matteo know you want this paper to be uploaded.

Ask for this paper to be uploaded.