Transition of pattern generation: The phenomenon of post-scratching locomotion (original) (raw)
Related papers
Frontiers in cellular neuroscience, 2018
In a previous report, we found neurons with ON-OFF and OFF-ON firing activity in the obex reticular formation during scratching. The aim of the present study was to examine whether the spinal neurons also exhibit this type of activity in relation to the "postural stage" of fictive scratching in the cat. We found that the extensor and intermediate scratching neurons exhibit an ON-OFF firing rate; conversely, the flexor neurons show an OFF-ON activity, relative to every scratching episode. These patterns of spiking activity are similar to those found in neurons from the obex reticular formation during scratching. Our findings provide support to the following hypotheses. First, there is a possible functional link between supraspinal and spinal, ON-OFF and OFF-ON neuronal groups. Second, the fictive goal-directed motor action to maintain the fictive "postural stage" of the hindlimb during fictive scratching is associated with the neuronal tonic activity of the OFF-ON...
2018
In a previous report, we found neurons with ON-OFF and OFF-ON firing activity in the obex reticular formation during scratching. The aim of the present study was to examine whether the spinal neurons also exhibit this type of activity in relation to the "postural stage" of fictive scratching in the cat. We found that the extensor and intermediate scratching neurons exhibit an ON-OFF firing rate; conversely, the flexor neurons show an OFF-ON activity, relative to every scratching episode. These patterns of spiking activity are similar to those found in neurons from the obex reticular formation during scratching. Our findings provide support to the following hypotheses. First, there is a possible functional link between supraspinal and spinal, ON-OFF and OFF-ON neuronal groups. Second, the fictive goal-directed motor action to maintain the fictive "postural stage" of the hindlimb during fictive scratching is associated with the neuronal tonic activity of the OFF-ON spinal neurons, whereas the ON-OFF spinal neurons are associated with an extensor tone that occurred prior the postural stage.
Evidence for Specialized Rhythm-Generating Mechanisms in the Adult Mammalian Spinal Cord
Journal of Neuroscience, 2010
Locomotion and scratch are characterized by alternation of flexion and extension phases within one hindlimb, which are mediated by rhythm-generating circuitry within the spinal cord. By definition, the rhythm generator controls cycle period, phase durations, and phase transitions. The aim was to determine whether rhythm-generating mechanisms for locomotion and scratch are similar in adult decerebrate cats. The regulation of cycle period during fictive scratching was evaluated, as were the effects of specific sensory inputs on phase durations and transitions during spontaneous fictive locomotion and pinna-evoked fictive scratching. Results show that cycle period during fictive scratching varied predominantly with flexion phase duration, contrary to spontaneous fictive locomotion, where cycle period varied with extension phase duration. Ankle dorsiflexion greatly increased extension phase duration and cycle period during fictive locomotion but did not alter cycle period during scratching. Moreover, stimulating the plantaris (ankle extensor muscle) nerve during flexion reset the locomotor rhythm to extension but not the scratch rhythm. Stimulating the plantaris nerve during extension prolonged the extension phase and cycle period during fictive locomotion but not during fictive scratching. Stimulating the sartorius nerve (hip flexor muscle) during early flexion reduced the flexion phase and cycle period during fictive locomotion, but considerably prolonged the flexion phase and cycle period during fictive scratching. These data indicate that cycle period, phase durations, and phase transitions are not regulated similarly during fictive locomotion and scratching, with or without sensory inputs, providing evidence for specialized rhythm-generating mechanisms within the adult mammalian spinal cord.
Partly Shared Spinal Cord Networks for Locomotion and Scratching
Integrative and Comparative Biology, 2011
Synopsis Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.
Neuroscience, 1991
ANtraet-Changes m the motor actiwty of the spinal locomotor generator evoked by tomc and phasic peripheral afferent signals dunng fictmous locomotion of both slow and fast rhythms were analysed m the cat The tomc afferent inflow was conditioned by the posihon of the hlndhmb The phasic afferent signals were imitated by electrical stimulation of hindhmb nerves The correlation between the kinematics of hlndhmb locomotor movement and sensory Inflow was lnveshgated dunng actual locomotion Rehable correlauons between motor activity parameters dunng fictitious locomotion were revealed in cases of both slow and fast "'locomotor" rhythms The mare difference between these cases was that correlations "duration-intensity'" were positive m the first and negative in the second case The functional role of "locomotor" pattern dependence on tomc sensory inflow consisted of providing stability for planting the hlndhmb on the ground For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent s~gnal caused no rearrangement in locomotor generator actlwty These moments corresponded to the transitions between "flexion'" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion The data obtained are compared with the results previously described for the scratching generator The character of changes m "'locomotor" activity m response to tonic and phasic sensory signals was similar to that of such changes in "scratching'" rhythm in the case of fast "locomotion" Intensification of the "flexion" phase caused by phasic high-mtenslt~ stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhlbmon (such as observed during "scratching") when this rhythm was fast It is concluded that the main regularmes of peripheral afferent control for both the locomotor and scratching generators are the same Moreover, these central pattern generators are just working regimes of a general spinal motor optimal control system containing the intrinsic model of hmb movement dynamics The consequences of this concept and ways of further research are &scussed
Journal of Neurophysiology, 2010
Spinal locomotor circuits are intrinsically capable of driving a variety of behaviors such as stepping, scratching, and swimming. Based on an observed rostrocaudal wave of activity in the motoneuronal firing during locomotor tasks, the traveling-wave hypothesis proposes that spinal interneuronal firing follows a similar rostrocaudal pattern of activation, suggesting the presence of spatially organized interneuronal modules within the spinal motor system. In this study, we examined if the spatial organization of the lumbar interneuronal activity patterns during locomotor activity in the adult mammalian spinal cord was consistent with a traveling-wave organizational scheme. The activity of spinal interneurons within the lumbar intermediate zone was examined during air-stepping in subchronic spinal cats. The preferred phase of interneuronal activity during a step cycle was determined using circular statistics. We found that the preferred phases of lumbar interneurons from both sides of...
The Journal of Physiology, 2005
Reflex actions of muscle afferents in hindlimb flexor nerves were examined on ipsilateral motoneurone activity recorded in peripheral nerves during midbrain stimulation-evoked fictive locomotion and during fictive scratch in decerebrate cats. Trains of stimuli (15-30 shocks at 200 Hz) were delivered during the flexion phase at intensities sufficient to activate both group I and II afferents (5 times threshold, T). In many preparations tibialis anterior (TA) nerve stimulation terminated ongoing flexion and reset the locomotor cycle to extension (19/31 experiments) while extensor digitorum longus (EDL) stimulation increased and prolonged the ongoing flexor phase activity (20/33 preparations). The effects of sartorius, iliopsoas and peroneus longus muscle afferent stimulation were qualitatively similar to those of EDL nerve. Resetting to extension was seen only with higher intensity stimulation (5T) while ongoing flexor activity was often enhanced at group I intensity (2T) stimulation. The effects of flexor nerve stimulation were qualitatively similar during fictive scratch. Reflex reversals were consistently observed in some fictive locomotor preparations. In those cases, EDL stimulation produced a resetting to extension and TA stimulation prolonged the ongoing flexion phase. Occasionally reflex reversals occurred spontaneously during only one of several stimulus presentations. The variable and opposite actions of flexor afferents on the locomotor step cycle indicate the existence of parallel spinal reflex pathways. A hypothetical organization of reflex pathways from flexor muscle afferents to the spinal pattern generator networks with competing actions of group I and group II afferents on the flexor and extensor portions of this central circuitry is proposed.
Experimental Brain Research, 1990
Extracellular recordings from interneurons located in the L4 spinal segment were made during fictive locomotion produced by electrical stimulation of the mesencephalic locomotor region (MLR) in the paralysed decerebrate cat. Only interneurons within the L4 segment which received group II input from quadriceps, sartorius or the pretibial flexor muscle afferents and which had axonal projections to motor nuclei in L7 were selected for analysis. During the fictive step cycle two thirds of these interneurons fired action potentials during the time of activity in the ipsilateral hindlimb flexor neurograms. These cells were also less responsive to peripheral input during the extension phase of the fictive locomotion cycle. The remaining one third of the interneurons examined were not rhythmically active during locomotion. The possible contributions of the midlumbar interneurons to motoneuron activity during locomotion are discussed.