SMAC mimetic birinapant plus radiation eradicates human head and neck cancers with genomic amplifications of cell death genes FADD and BIRC2 (original) (raw)

The FA/BRCA Pathway Identified as the Major Predictor of Cisplatin Response in Head and Neck Cancer by Functional Genomics

Molecular cancer therapeutics, 2017

Patients with advanced stage head and neck squamous cell carcinoma (HNSCC) are often treated with cisplatin-containing chemoradiation protocols. Although cisplatin is an effective radiation sensitizer, it causes severe toxicity and not all patients benefit from the combination treatment. HNSCCs expectedly not responding to cisplatin may better be treated with surgery and postoperative radiation or cetuximab and radiation, but biomarkers to personalize chemoradiotherapy are not available. We performed an unbiased genome-wide functional genetic screen in vitro to identify genes that influence the response to cisplatin in HNSCC cells. By siRNA-mediated knockdown, we identified the Fanconi anemia/BRCA pathway as the predominant pathway for cisplatin response in HNSCC cells. We also identified the involvement of the SHFM1 gene in the process of DNA cross-link repair. Furthermore, expression profiles based on these genes predict the prognosis of radiation- and chemoradiation-treated head ...

Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptormediated apoptosis

Oncotarget, 2016

DNA repair defects due to detrimental BRCA2-mutations confer increased susceptibility towards DNA interstrand-crosslinking (ICL) agents and define patient subpopulations for individualized genotype-based cancer therapy. However, due to the side effects of these drugs, there is a need to identify additional agents, which could be used alone or in combination with ICL-agents. Therefore, we investigated whether BRCA2-mutations might also increase the sensitivity towards TRAIL-receptors (TRAIL-R)-targeting compounds. Two independent model systems were applied: a BRCA2 gene knockout and a BRCA2 gene complementation model. The effects of TRAIL-R-targeting compounds and ICL-agents on cell viability, apoptosis and cell cycle distribution were compared in BRCA2-proficient versus-deficient cancer cells in vitro. In addition, the effects of the TRAIL-R2-targeting antibody LBY135 were assessed in vivo using a murine tumor xenograft model. BRCA2-deficient cancer cells displayed an increased sens...

Cell death in head and neck cancer pathogenesis and treatment

Cell Death & Disease

Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in altera...

A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer

Oncotarget, 2012

Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required. We investigated how induction of replicational stress by the ribonucleotide reductase inhibitor hydroxyurea (HU) combined with histone deacetylase inhibitors (HDACi) exerts anti-tumor activity. We treated HNSCC cell lines and freshly isolated tumor cells with HDACi, such as the clinically approved anti-epileptic drug valproic acid (VPA), in combination with HU. Our data demonstrate that at clinically achievable levels VPA/HU combinations efficiently block proliferation as well...

Dose Dependent Activation of Retinoic Acid-Inducible Gene-I Promotes Both Proliferation and Apoptosis Signals in Human Head and Neck Squamous Cell Carcinoma

PLoS ONE, 2013

The retinoic-acid-inducible gene (RIG)-like receptor (RLR) family proteins are major pathogen reorganization receptors (PRR) responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC). RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 59-triphosphate RNA (3p-RNA) induces low levels of interferon and proinflammatory cytokines and promotes NF-kB-and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFa receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell surviral, whereas higher level of RIG-I activation leads to apopotosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC.

BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis

Cancer research, 2003

We have evaluated the role played by BRCA1 in mediating the phenotypic response to a range of chemotherapeutic agents commonly used in cancer treatment. Here we provide evidence that BRCA1 functions as a differential mediator of chemotherapy-induced apoptosis. Specifically, we demonstrate that BRCA1 mediates sensitivity to apoptosis induced by antimicrotubule agents but conversely induces resistance to DNA-damaging agents. These data are supported by a variety of experimental models including cells with inducible expression of BRCA1, siRNA-mediated inactivation of endogenous BRCA1, and reconstitution of BRCA1-deficient cells with wild-type BRCA1. Most notably we demonstrate that BRCA1 induces a 10-1000-fold increase in resistance to a range of DNA-damaging agents, in particular those that give rise to double-strand breaks such as etoposide or bleomycin. In contrast, BRCA1 induces a >1000-fold increase in sensitivity to the spindle poisons, paclitaxel and vinorelbine. Fluorescence...

Integrative Histologic and Bioinformatics Analysis of BIRC5/Survivin Expression in Oral Squamous Cell Carcinoma

International journal of molecular sciences, 2018

Survivin is a well-known protein involved in the inhibition of apoptosis in many different cancer types. The aim of this study was to perform an integrated bioinformatic and histologic analysis in order to study the expression and prognostic role of Survivin and its related gene in oral cancer. Publicly available databases were accessed via Gene Expression Omnibus and Oncomine, in addition raw data from The Cancer Genome Atlas (TCGA) were also obtained in order to analyze the rate of gene mutation, expression and methylation in patients with oral squamous cells carcinoma (OSCC). Immunohistochemistry (IHC) was also performed in order to evaluate the nuclear and cytoplasmic expression of Survivin and their correlation with cell proliferation in samples from OSCC patients. Results of this study revealed that Survivin is rarely mutated in OSCC samples and upregulated when compared to non-cancerous tissue. A negative correlation between the methylation of the island cg25986496 and BIRC5 ...

The BIRC6 gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis

Oncotarget, 2014

Treatment resistance, the major challenge in the management of advanced prostate cancer, is in part based on resistance to apoptosis. The Inhibitor of Apoptosis (IAP) family is thought to play key roles in survival and drug resistance of cancer via inhibition of apoptosis. Of the IAP family members, cIAP1, cIAP2, XIAP and survivin are known to be up-regulated in prostate cancer. BIRC6, a much less studied IAP member, was recently shown to be elevated in castration-resistant prostate cancer (CRPC). In the present study, we showed a correlation between elevated BIRC6 expression in clinical prostate cancer specimens and poor patient prognostic factors, as well as co-upregulation of certain IAP members. In view of this, we designed antisense oligonucleotides that simultaneously target BIRC6 and another co-upregulated IAP member (dASOs). Two dASOs, targeting BIRC6+cIAP1 and BIRC6+survivin, showed substantial inhibition of CRPC cells proliferation, exceeding that obtained with single BIRC...

Exploring the metastatic role of the inhibitor of apoptosis BIRC6 in Breast Cancer

Breast cancer is the most common cancer as well as the first cause of death by cancer in women worldwide. BIRC6 (baculoviral IAP repeat-containing protein 6) is a member of the inhibitors of apoptosis protein family thought to play an important role in the progression or chemoresistance of many cancers. The aim of the present work was to investigate the role of apoptosis inhibitor BIRC6 in breast cancer, focusing particularly on its involvement in the metastatic cascade.We analyzed BIRC6 mRNA expression levels and Copy Number Variations (CNV) in three breast cancer databases from The Cancer Genome Atlas (TCGA) comparing clinical and molecular attributes. Genomic analysis was performed using CBioportal platform while transcriptomic studies (mRNA expression levels, correlation heatmaps, survival plots and Gene Ontology) were performed with USC Xena and R. Statistical significance was set at p-values less than 0.05.Our analyses showed that there was a differential expression of BIRC6 i...

Integrative Genomics in Combination with RNA Interference Identifies Prognostic and Functionally Relevant Gene Targets for Oral Squamous Cell Carcinoma

PLoS Genetics, 2013

In oral squamous cell carcinoma (OSCC), metastasis to lymph nodes is associated with a 50% reduction in 5-year survival. To identify a metastatic gene set based on DNA copy number abnormalities (CNAs) of differentially expressed genes, we compared DNA and RNA of OSCC cells laser-microdissected from non-metastatic primary tumors (n = 17) with those from lymph node metastases (n = 20), using Affymetrix 250K Nsp single-nucleotide polymorphism (SNP) arrays and U133 Plus 2.0 arrays, respectively. With a false discovery rate (FDR),5%, 1988 transcripts were found to be differentially expressed between primary and metastatic OSCC. Of these, 114 were found to have a significant correlation between DNA copy number and gene expression (FDR,0.01). Among these 114 correlated transcripts, the corresponding genomic regions of each of 95 transcripts had CNAs differences between primary and metastatic OSCC (FDR,0.01). Using an independent dataset of 133 patients, multivariable analysis showed that the OSCC-specific and overall mortality hazards ratio (HR) for patients carrying the 95-transcript signature were 4.75 (95% CI: 2.03-11.11) and 3.45 (95% CI: 1.84-6.50), respectively. To determine the degree by which these genes impact cell survival, we compared the growth of five OSCC cell lines before and after knockdown of over-amplified transcripts via a high-throughput siRNA-mediated screen. The expression-knockdown of 18 of the 26 genes tested showed a growth suppression $30% in at least one cell line (P,0.01). In particular, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC, and the growth suppression was likely caused by increase in apoptosis. Further investigation is warranted to examine the biological role of these genes in OSCC progression and their therapeutic potentials.