Arms Race Coevolution: The Local and Geographical Structure of a Host–-Parasite Interaction (original) (raw)

2010, Evolution: Education and Outreach

Consideration of complex geographic patterns of mreciprocal adaptation has provided insight into new features of the coevolutionary process. In this paper, we provide mecological, historical, and geographical evidence for coevolution under complex temporal and spatial scenarios that include intermittent selection, species turnover across localities, and a range of trait match/mismatch across populations. Our study focuses on a plant host–parasitic plant interaction endemic to arid and semiarid regions of Chile. The long spines of Chilean cacti have been suggested to evolve under parasite-mediated selection as a first line of defense against the mistletoe Tristerix aphyllus. The mistletoe, in turn, has evolved an extremely long morphological structure that emerges from the seed endosperm (radicle) to reach the host cuticle. When spine length was traced along cactus phylogenies, a significant association between spine length and parasitism was detected, indicating that defensive traits evolved in high correspondence with the presence or absence of parasitism in two cactus lineages. Assessment of spine-radicle matching across populations revealed a potential for coevolution in 50% of interaction pairs. Interestingly, hot spots for coevolution did not distribute at random across sites. On the contrary, interaction pairs showing high matching values occur mostly in the northern distribution of the interaction, suggesting a geographical structure for coevolution in this system. Only three sampled interaction pairs were so mismatched that reciprocal selection could not occur given current trait distributions. Overall, different lines of evidence indicate that arms-race coevolution is an ongoing phenomenon that occurs in the global system of interconnected populations.