Characterisation and stability of hydrophobic surfaces in water (original) (raw)

Characterization of highly hydrophobic coatings deposited onto pre-oxidized silicon from water dispersible organosilanes

Thin Solid Films, 2003

The formation and quality of highly hydrophobic coatings deposited from water dispersible organosilanes onto pre-oxidized single crystal silicon were studied using atomic force microscopy, ellipsometry, dynamic contact angle measurements and electrochemical impedance spectroscopy (EIS). Highly hydrophobic films of a commercially available water dispersible silane and two different cationic alkoxysilanes were prepared by dip coating. It was found using atomic force microscopy that, in general, the structure of these highly hydrophobic films is a continuous film with some particulates attributed to bulk polymerization of the precursor molecule in water. Film defects were quantified using EIS by the value of charge transfer resistance at the hydrofluoric acidysilicon interface. Potential applications of this type of coatings include reductionyelimination of stiction in micro-electromechanical systems, contact printing in materials microfabrication, inhibition of corrosion and oxidation, prevention of water wetting, lubrication and protein adsorption. ᮊ

Functionalization of hydrogenated (111) silicon surface with hydrophobic polymer chains

Physical Review B, 2011

The first stage functionalization of hydrogenated (111) Si surface with methyl-terminated monolayers to form hydrophobic coatings has been studied by accurate ab initio density functional total energy calculations. The first stage adsorption events involving one or two deposited n-alkane and n-alkyl-silane molecules have been characterized from the geometrical and the energetic points of view; the ground-state adsorption configurations together with the geometrical and the energetic parameters relevant to self-assembling processes have been obtained, such as the polymers tilt angles, the rotation energy barriers, the binding energies, and the electrostatic interactions. The above-mentioned quantities have been related to the stability properties of self-assembled monolayers and have been recognized to affect critically the stability and the uniformity of the hydrophobic film elucidating the reasons why some commonly used polymers behave differently.

Hydrophobicity, Hydrophilicity and Silane Surface Modification

Hydrophobicity, Hydrophilicity and Silane Surface Modification, 2011

Surface modification with organosilanes is reviewed in the context of modes of interaction with water. Physical and chemical properties of silicon reagents are tabulated along with deposition techniques.

Modeling Mechanisms of Water Affinity and Condensation on Si-Based Surfaces Via Experiments And Applications

i ABSTRACT Water affinity and condensation on Si-based surfaces is investigated to address the problem of fogging on silicone intraocular lenses (IOL) during cataract surgery, using Si(100), silica (SiO 2 ) and polydimethylsiloxane (PDMS) silicone (SiOC 2 H 6 ) n . Condensation is described by two step nucleation and growth where roughness controls heterogeneous nucleation of droplets followed by Ostwald ripening. Wetting on hydrophilic surfaces consists of continuous aqueous films while hydrophobic surfaces exhibit fogging with discrete droplets. Si-based surfaces with wavelength above 200 nm exhibit fogging during condensation. Below 200 nm, surfaces are found to wet during condensation. Water affinity of Si-based surfaces is quantified via the surface free energy (SFE) using Sessile drop contact angle analysis, the Young-Dupré equation, and Van Oss theory. Topography is analyzed using tapping mode atomic force microscopy (TMAFM). Polymer adsorption and ion beam modification of materials (IBMM) can modify surface topography, composition, and SFE, and alter water affinity of the Si-based surfaces we studied. Wet adsorption of hydroxypropyl methylcellulose (HPMC) C 32 H 60 O 19 with areal densities ranging from 10 18 atom/cm 2 to 10 19 atom/cm 2 characterized via Rutherford backscattering spectrometry (RBS), allows for the substrate to adopt the topography of the HPMC film and its hydrophilic properties. The HPMC surface composition maintains a bulk stoichiometric ratio as confirmed by 4.265 MeV 12 C( , ) 12 C and 3.045 MeV 16 O( , ) 16 O, and 2.8 MeV He ++ elastic recoil detection (ERD) of hydrogen. Both PIXE and RBS ii methods give comparable areal density results of polymer films on Si(100), silica, and PDMS silicone substrates. The SFE and topography of PDMS silicone polymers used for IOLs can also be modified by IBMM. IBMM of HPMC cellulose occurs during IBA as well. Damage curves and ERD are shown to characterize surface desorption accurately during IBMM so that ion beam damage can be accounted for during analysis of polymer areal density and composition. IBMM of Si(100)-SiO 2 ordered interfaces also induces changes of SFE, as ions disorder surface atoms. The SFE converges for all surfaces, hydrophobic and hydrophilic, as ions alter electrochemical properties of the surface via atomic and electronic displacements.

Asymmetric Electrostatic and Hydrophobic–Hydrophilic Interaction Forces between Mica Surfaces and Silicone Polymer Thin Films

ACS Nano, 2013

We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in)

A New Method of Preparing Monolayers on Silicon and Patterning Silicon Surfaces by Scribing in the Presence of Reactive Species

Langmuir, 2001

Here we describe a new and simple method for preparing alkyl monolayers on silicon, which consists of mechanically scribing oxide-coated silicon while it is wet with 1-alkenes or 1-alkynes (neat or in inert solvents) under ambient conditions. X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, wetting data, and stability tests suggest covalent bonding of unsaturated species to exposed silicon surfaces. Enclosures (hydrophobic corrals) made by scribing silicon that is wet with unsaturated hydrophobic species hold droplets of water and liquids with substantially lower surface tensions. Wetting tests suggest that 1-alkynes make better hydrophobic corrals than 1-alkenes, and theoretical results suggest it should be more difficult for alkyl chains of chemisorbed 1-alkenes to pack than those of 1-alkynes. Underivatized interior regions of hydrophobic corrals are functionalized with polyelectrolyte multilayers. Theoretical energies for water and methanol droplets (gravitational and surface) in hydrophobic corrals are calculated, and a model of failure of liquid droplets in hydrophobic corrals is presented. * (1) Yoshinobu, J.; Tsuda, H.; Onchi, M.; Nishijima, M.

Micro-and nanostructured silicon-based superomniphobic surfaces

Journal of Colloid and Interface Science, 2014

We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called ''superomniphobic'' surfaces. For this purpose, silicon interfaces with different surface morphologies, single or double scale structuration, were investigated. These structured surfaces were chemically treated with perfluorodecyltrichlorosilane (PFTS), a low surface energy molecule. The morphology of the resulting surfaces was characterized using scanning electron microscopy (SEM). Their wetting properties: static contact angle (CA) and contact angle hysteresis (CAH) were investigated using liquids of various surface tensions. Despite that we found that all the different morphologies display a superhydrophobic character (CA > 150°for water) and superoleophobic behavior (CA % 140°for hexadecane), values of hysteresis are strongly dependent on the liquid surface tension and surface morphology. The best surface described in this study was composed of a dual scale texturation i.e. silicon micropillars covered by silicon nanowires. Indeed, this surface displayed high static contact angles and low hysteresis for all tested liquids.

Enhanced Hydrolytic Stability of Siliceous Surfaces Modified with Pendant Dipodal Silanes

Chemistry - A European Journal, 2014

Dipodal silanes possess two silicon atoms that can covalently bond to a surface. They offer a distinct advantage over conventional silanes commonly used for surface modification in terms of maintaining the integrity of surface coatings, adhesive primers, and composites in aqueous environments. New nonfunctional and functional dipodal silanes with structures containing "pendant" rather than "bridged" organofunctionality are introduced. The stability of surfaces in aqueous environments prepared from dipodal silanes with hydrophobic alkyl functionality is compared to the stability of similar surfaces prepared from the conventional si-lanes. In strongly acidic and brine environments, surfaces modified with dipodal silanes demonstrate markedly improved resistance to hydrolysis compared to surfaces prepared from conventional silanes. Pendant dipodal silanes exhibit greater stability than bridged dipodal silanes. The apparent equilibrium constant for the formation of silanol species by the hydrolysis of a disiloxane bond was determined as K c = [SiOH] 2 /[Si-O-Si][H 2 O] = 6 AE 1 10 À5 and is helpful in understanding the enhanced hydrolytic stability of surfaces modified with dipodal silanes.

Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces

Nano Research, 2009

A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer (SAM) to silicon micro/nano-textured surfaces is presented in this paper. The micro/nano-textured surfaces on silicon substrates were generated by the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) technique. Octadecyltrichlorosilane (OTS) SAMs were then applied to the textured surfaces by dip coating. The topography and wetting properties of the resulting surfaces were characterized using scanning electron microscopy (SEM) and a video-based contact angle measurement system. The results show that by introducing OTS SAMs on the silicon micro/nano-textured surfaces, superhydrophobic surfaces with water contact angles (WCAs) of 155° were obtained, as compared to the WCAs of OTS-modifi ed smooth silicon surfaces of about 112°. Surface topography was found to directly infl uence the WCA as predicted by the Cassie-Baxter model.

Thermodynamics of hydrophobic interaction between silica surfaces coated with octadecyltrichlorosilane

Journal of Colloid and Interface Science, 2013

Surface force measurements conducted with thiolated gold surfaces showed previously that hydrophobic interaction entails a decrease in excess film entropy, suggesting that hydrophobic force originates from changes in the structure of the medium (water) confined between hydrophobic surfaces [1]. As a follow-up work, surface force measurements have been conducted in the present work using an atomic force microscope (AFM) with silica surfaces coated with octadecyltrichlorosilane (OTS) at temperatures in the range of 10-40°C. A thermodynamic analysis of the results show that both the excess film entropy (DS f) and excess film enthalpy (DH f) decrease with decreasing thickness of the water films between the hydrophobic surfaces. It has been found also that |DH f | > |TDS f |, which represents a necessary condition for the excess free energy change (DG f) to be negative and hence the hydrophobic interaction be attractive. Thus, the results obtained with both the thiolated and silylated surfaces show that hydrophobic forces originate from the structural changes in the medium. It is believed that the water molecules in the thin liquid films (TLFs) of water form clusters as a means to reduce the free energy when they cannot form H-bonds to neighboring hydrophobic surfaces.