Geometric simplification for reducing optic flow in VR (original) (raw)

A novel method for VR sickness reduction based on dynamic field of view processing

Virtual Reality

In this paper, we proposed a novel method for virtual reality (VR) sickness reduction based on dynamic field of view (FOV) processing. Dynamic FOV processing is performed based on the estimated VR sickness for each video frame. The level of sickness is estimated using VR sickness model, which is obtained by defining the relationship between the motion information and the measured VR sickness. For motion information analysis, subregion-based correspondence points tracking is used to efficiently remove outliers and prevent prediction error propagation. Amount of head dispersion is used as a quantitative VR sickness measure, which can be calculated from inertial measurement unit sensor in VR devices. The optimal FOV range was determined by experimentally validating a minimum FOV that can effectively reduce VR sickness with almost negligible loss in presence. The simulation results show a significant decrease of 37% compared to full FOV viewing, when FOV is dynamically varied between fu...

Reducing Cybersickness in 360-Degree Virtual Reality

Multisensory Research, 2021

Despite the technological advancements in Virtual Reality (VR), users are constantly combating feelings of nausea and disorientation, the so-called cybersickness. Cybersickness symptoms cause severe discomfort and hinder the immersive VR experience. Here we investigated cybersickness in 360-degree head-mounted display VR. In traditional 360-degree VR experiences, translational movement in the real world is not reflected in the virtual world, and therefore self-motion information is not corroborated by matching visual and vestibular cues, which may trigger symptoms of cybersickness. We evaluated whether a new Artificial Intelligence (AI) software designed to supplement the 360-degree VR experience with artificial six-degrees-of-freedom motion may reduce cybersickness. Explicit (simulator sickness questionnaire and Fast Motion Sickness (FMS) rating) and implicit (heart rate) measurements were used to evaluate cybersickness symptoms during and after 360-degree VR exposure. Simulator si...

Mitigating Visually Induced Motion Sickness

Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2015

Virtual reality has grown rapidly over the past decade, yet visually induced motion sickness (VIMS), continues to affect the usability of this technology. Aside from medicine, physical hand-eye-coordination tasks have been found to be effective in mitigating symptoms of VIMS, however the need for equipment outside of virtual reality limits the usefulness of these mitigation techniques. In this study, 21 participants were sickened via a virtual obstacle course and used one of two mitigation techniques. The first, natural decay, is simply waiting outside the virtual environment (VE) for symptoms to subside; the other was a virtual peg-in-hole task, performed in the VE with a gamepad. A paired samples t-test confirmed that the virtual obstacle course induced VIMS. Both mitigation techniques significantly lessened the symptoms of VIMS, but there were no significant differences in the effectiveness of mitigation between the two techniques. A virtual mitigation method allowing continued i...

Rotation Blurring: Use of Artificial Blurring to Reduce Cybersickness in Virtual Reality First Person Shooters

2017

Users of Virtual Reality (VR) systems often experience vection, the perception of self-motion in the absence of any physical movement. While vection helps to improve presence in VR, it often leads to a form of motion sickness called cybersickness. Cybersickness is a major deterrent to large scale adoption of VR. Prior work has discovered that changing vection (changing the perceived speed or moving direction) causes more severe cybersickness than steady vection (walking at a constant speed or in a constant direction). Based on this idea, we try to reduce the cybersickness caused by character movements in a First Person Shooter (FPS) game in VR. We propose Rotation Blurring (RB), uniformly blurring the screen during rotational movements to reduce cybersickness. We performed a user study to evaluate the impact of RB in reducing cybersickness. We found that the blurring technique led to an overall reduction in sickness levels of the participants and delayed its onset. Participants who ...

Mitigating Visually Induced Motion Sickness: A virtual hand-eye coordination task

Virtual reality has grown rapidly over the past decade, yet visually induced motion sickness (VIMS), continues to affect the usability of this technology. Aside from medicine, physical hand-eye-coordination tasks have been found to be effective in mitigating symptoms of VIMS, however the need for equipment outside of virtual reality limits the usefulness of these mitigation techniques. In this study, 21 participants were sickened via a virtual obstacle course and used one of two mitigation techniques. The first, natural decay, is simply waiting outside the virtual environment (VE) for symptoms to subside; the other was a virtual peg-in-hole task, performed in the VE with a gamepad. A paired samples t-test confirmed that the virtual obstacle course induced VIMS. Both mitigation techniques significantly lessened the symptoms of VIMS, but there were no significant differences in the effectiveness of mitigation between the two techniques. A virtual mitigation method allowing continued immersion in a VE would pave the way for long-term immersion virtual reality studies, involving topics such as vigilance or training.