An Emotion-Aware Multi-Task Approach to Fake News and Rumour Detection using Transfer Learning (original) (raw)

Localization of Fake News Detection via Multitask Transfer Learning

2020

The use of the internet as a fast medium of spreading fake news reinforces the need for computational tools that combat it. Techniques that train fake news classifiers exist, but they all assume an abundance of resources including large labeled datasets and expert-curated corpora, which low-resource languages may not have. In this work, we make two main contributions: First, we alleviate resource scarcity by constructing the first expertly-curated benchmark dataset for fake news detection in Filipino, which we call “Fake News Filipino.” Second, we benchmark Transfer Learning (TL) techniques and show that they can be used to train robust fake news classifiers from little data, achieving 91% accuracy on our fake news dataset, reducing the error by 14% compared to established few-shot baselines. Furthermore, lifting ideas from multitask learning, we show that augmenting transformer-based transfer techniques with auxiliary language modeling losses improves their performance by adapting ...

A Deep Transfer Learning Approach for Fake News Detection

2020 International Joint Conference on Neural Networks (IJCNN), 2020

Fake or incorrect or miss-information detection has nowadays attracted attention to the researchers and developers because of the huge information overloaded in the web. This problem can be considered as equivalent to lie detection, truthfulness identification or stance detection. In our particular work, we focus on deciding whether the title of a news is consistent with its body text- a problem equivalent to fake information identification. In this paper, we propose a deep transfer learning approach where the problem of detecting title-body consistency is posed from the viewpoint of Textual Entailment (TE) where the title is considered as a hypothesis and news body is treated as a premise. The idea is to decide whether the body infers the title or not. Evaluation on the existing benchmark datasets, namely Fake News Challenge (FNC) dataset (released in Fake News Challenge Stage 1 (FNC-I): Stance Detection) show the efficacy of our proposed approach in comparison to the state-of-the-...

Developed Models Based on Transfer Learning for Improving Fake News Predictions

Journal of Universal Computer Science, 2023

In conjunction with the global concern regarding the spread of fake news on social media, there is a large flow of research to address this phenomenon. The wide growth in social media and online forums has made it easy for legitimate news to merge with comprehensive misleading news, negatively affecting people's perceptions and misleading them. As such, this study aims to use deep learning, pre-trained models, and machine learning to predict Arabic and English fake news based on three public and available datasets: the Fake-or-Real dataset, the AraNews dataset, and the Sentimental LIAR dataset. Based on GloVe (Global Vectors) and FastText pre-trained models, A hybrid network has been proposed to improve the prediction of fake news. In this proposed network, CNN (Convolution Neural Network) was used to identify the most important features. In contrast, BiGRU (Bidirectional Gated Recurrent Unit) was used to measure the long-term dependency of sequences. Finally, multi-layer perceptron (MLP) is applied to classify the article news as fake or real. On the other hand, an Improved Random Forest Model is built based on the embedding values extracted from BERT (Bidirectional Encoder Representations from Transformers) pre-trained model and the relevant speaker-based features. These relevant features are identified by a fuzzy model based on feature selection methods. Accuracy was used as a measure of the quality of our proposed models, whereby the prediction accuracy reached 0.9935, 0.9473, and 0.7481 for the Fake-or-Real dataset, AraNews dataset, and Sentimental LAIR dataset respectively. The proposed models showed a significant improvement in the accuracy of predicting Arabic and English fake news compared to previous studies that used the same datasets.

Embracing Domain Differences in Fake News: Cross-domain Fake News Detection using Multi-modal Data

2021

With the rapid evolution of social media, fake news has become a significant social problem, which cannot be addressed in a timely manner using manual investigation. This has motivated numerous studies on automating fake news detection. Most studies explore supervised training models with different modalities (e.g., text, images, and propagation networks) of news records to identify fake news. However, the performance of such techniques generally drops if news records are coming from different domains (e.g., politics, entertainment), especially for domains that are unseen or rarely-seen during training. As motivation, we empirically show that news records from different domains have significantly different word usage and propagation patterns. Furthermore, due to the sheer volume of unlabelled news records, it is challenging to select news records for manual labelling so that the domain-coverage of the labelled dataset is maximized. Hence, this work: (1) proposes a novel framework th...

NSIT@NLP4IF-2019: Propaganda Detection from News Articles using Transfer Learning

Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

In this paper, we describe our approach and system description for NLP4IF 2019 Workshop: Shared Task on Fine-Grained Propaganda Detection. Given a sentence from a news article, the task is to detect whether the sentence contains a propagandistic agenda or not. The main contribution of our work is to evaluate the effectiveness of various transfer learning approaches like ELMo, BERT, and RoBERTa for propaganda detection. We show the use of Document Embeddings on the top of Stacked Embeddings combined with LSTM for identification of propagandistic context in the sentence. We further provide analysis of these models to show the effect of oversampling on the provided dataset. In the final testset evaluation, our system ranked 21st with F 1-score of 0.43 in the SLC Task.

Unified Fake News Detection using Transfer Learning of Bidirectional Encoder Representation from Transformers model

2022

Automatic detection of fake news is needed for the public as the accessibility of social media platforms has been increasing rapidly. Most of the prior models were designed and validated on individual datasets separately. But the lack of generalization in models might lead to poor performance when deployed in real-world applications since the individual datasets only cover limited subjects and sequence length over the samples. This paper attempts to develop a unified model by combining publicly available datasets to detect fake news samples effectively.

A Multitask Learning Approach for Fake News Detection: Novelty, Emotion, and Sentiment Lend a Helping Hand

2021 International Joint Conference on Neural Networks (IJCNN), 2021

The recent explosion in false information on social media has led to intensive research on automatic fake news detection models and fact-checkers. Fake news and misinformation, due to its peculiarity and rapid dissemination, have posed many interesting challenges to the Natural Language Processing (NLP) and Machine Learning (ML) community. Admissible literature shows that novel information includes the element of surprise, which is the principal characteristic for the amplification and virality of misinformation. Novel and emotional information attracts immediate attention in the reader. Emotion is the presentation of a certain feeling or sentiment. Sentiment helps an individual to convey his emotion through expression and hence the two are co-related. Thus, Novelty of the news item and thereafter detecting the Emotional state and Sentiment of the reader appear to be three key ingredients, tightly coupled with misinformation. In this paper we propose a deep multitask learning model that jointly performs novelty detection, emotion recognition, sentiment prediction, and misinformation detection. Our proposed model achieves the state-of-the-art(SOTA) performance for fake news detection on three benchmark datasets, viz. ByteDance, Fake News Challenge(FNC), and Covid-Stance with 11.55%, 1.58%, and 21.76% improvement in accuracy, respectively. The proposed approach also shows the efficacy over the single-task framework with an accuracy gain of 11.53, 28.62, and 14.31 percentage points for the above three datasets. The source code is available at https://github.com/Nish-19/Multitask-Fake-News-NES.

Fake news detection using deep learning models: A novel approach

Transactions on Emerging Telecommunications Technologies, 2019

With the ever increase in social media usage, it has become necessary to combat the spread of false information and decrease the reliance of information retrieval from such sources. Social platforms are under constant pressure to come up with efficient methods to solve this problem because users' interaction with fake and unreliable news leads to its spread at an individual level. This spreading of misinformation adversely affects the perception about an important activity, and as such, it needs to be dealt with using a modern approach. In this paper, we collect 1356 news instances from various users via Twitter and media sources such as PolitiFact and create several datasets for the real and the fake news stories. Our study compares multiple state‐of‐the‐art approaches such as convolutional neural networks (CNNs), long short‐term memories (LSTMs), ensemble methods, and attention mechanisms. We conclude that CNN + bidirectional LSTM ensembled network with attention mechanism ach...

Combating multimodal fake news on social media: methods, datasets, and future perspective

Multimedia Systems

The growth in the use of social media platforms such as Facebook and Twitter over the past decade has significantly facilitated and improved the way people communicate with each other. However, the information that is available and shared online is not always credible. These platforms provide a fertile ground for the rapid propagation of breaking news along with other misleading information. The enormous amounts of fake news present online have the potential to trigger serious problems at an individual level and in society at large. Detecting whether the given information is fake or not is a challenging problem and the traits of social media makes the task even more complicated as it eases the generation and spread of content to the masses leading to an enormous volume of content to analyze. The multimedia nature of fake news on online platforms has not been explored fully. This survey presents a comprehensive overview of the state-of-the-art techniques for combating fake news on online media with the prime focus on deep learning (DL) techniques keeping multimodality under consideration. Apart from this, various DL frameworks, pre-trained models, and transfer learning approaches are also underlined. As till date, there are only limited multimodal datasets that are available for this task, the paper highlights various data collection strategies that can be used along with a comparative analysis of available multimodal fake news datasets. The paper also highlights and discusses various open areas and challenges in this direction.

IRJET- FAKE NEWS DETECTION IN TWITTER DATASETS USING DEEP LEARNING TECHNIQUES

IRJET, 2021

The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. Besides other use cases, news outlets benefitted from the widespread use of social media platforms by providing updated news in near real time to its subscribers. The news media evolved from newspapers, tabloids, and magazines to a digital form such as online news platforms, blogs, social media feeds, and other digital media formats. Fake news denotes a type of yellow press which intentionally presents misinformation or hoaxes spreading through both traditional print news media and recent online social media. In recent years, due to the booming development of online social networks, fake news for various commercial and political purposes has been appearing in large numbers and widespread in the online world. With deceptive words, online social network users can get infected by this online fake news easily, which has brought about tremendous effects on the offline society already. An important goal in improving the trustworthiness of information in online social networks is to identify the fake news timely. This project aims at investigating the principles, methodologies and algorithms for detecting fake news articles, creators and subjects from online social networks and evaluating the corresponding performance. This project addresses the challenges introduced by the unknown characteristics of fake news and diverse connections among news articles, creators and subjects. This project introduces a novel automatic fake news credibility inference model using deep learning algorithm. Based on a set of explicit and latent features extracted from the textual information, deep learning algorithms builds a deep diffusive network model to learn the representations of news articles, creators and subjects simultaneously.