Short run dynamics of multi-class queues (original) (raw)
Related papers
To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems
International Series in Operations Research & Management Science, 2003
Preface xi 1. INTRODUCTION A non-cooperative game is defined as follows. Let N = {1,. .. , n} be a finite set of players and let A i denote a set of actions available to player i ∈ N. A pure strategy for player i is an action from A i. A mixed strategy corresponds to a probability function which prescribes a randomized rule for selecting an action from A i. Denote by S i the set of strategies available to player i. A strategy profile s = (s 1 ,. .. , s n) assigns a strategy s i ∈ S i to each player i ∈ N. Each player is associated with a real payoff function F i (s). This function specifies the payoff received by player i given that the strategy profile s is adopted by the players. Denote by s −i a profile for the set of players N \ {i}. The function F i (s) = F i (s i , s −i) is assumed to be linear in s i. This means that if s i is a mixture with 1 In case of periodicity, with period d, replace the limit by averaging the limits along d consecutive periods. Note that ∞ s=0 πs(δ) does not necessarily sum up to 1. On one hand, it can be greater than 1 (in fact, can even be unbounded) when more than one recurrent chain exists, and on the other hand it may sum up to 0. An example for the latter case is when λ > µ and δ(s) = join for all s ≥ 0. x F (x, y). We are interested in cases where x(y) is continuous and strictly monotone. Figure 1.1 illustrates a situation where a strategy corresponds to a nonnegative number. It depicts one instance where x(y) is monotone decreasing and another where it is monotone increasing. We call these situations avoid the crowd (ATC) and follow the crowd (FTC), respectively. The rationale behind this terminology is that in an FTC (respectively, ATC) case, the higher the values selected by the others, the higher (respectively, lower) is one's best response. 3 An interesting generalization to this rule is proposed by Balachandran and Radhakrishnan [19]. Suppose that waiting t time units costs Ce at for given parameters C > 0 and a ≥ 0. Then, the expected waiting cost of a customer is ∞ 0 Ce at w(t) dt where w(t) is the density function of the waiting time. In an M/M/1 system w(t) = (µ − λ)e −(µ−λ)t where λ is the arrival rate and µ is the service rate. In this case the expected cost equals C µ−a−λ. Note that the case of linear waiting costs is obtained when a = 0. 4 See Deacon and Sonstelie [43] and Png and Reitman [140] for empirical studies concerning this parameter. Examples for disciplines that are strong and work-conserving are FCFS, LCFS, random order, order which is based on customers payments, and EPS. Service requirements are assumed to be independent and identically distributed. Denote by µ −1 the (common) expected service requirement (i.e., µ is the rate of service). For stability, assume that the system's utilization factor ρ = λ µ is strictly less than 1 (sometimes, when individual optimization leads to stability, this assumption is removed). The following five results hold when the arrival process is Poisson with rate λ, the service distribution is exponential (an M/M/1 model) with rate µ, and the service discipline is strong and work-conserving. They also hold for M/G/1 models when the service discipline is either EPS or LCFS-PR. The probability that n (n ≥ 0) customers are in the system (at arbitrary times as well as at arrival times) is (1 − ρ)ρ n. (1.2) 11 When 3 5λ > 1, commuters appear at a rate so low that even when all of them use the shuttle service, the individual's best response is still to use the bus service. In other words, when λ < 3 5 , using the bus service is a dominant strategy. Chapter 2 OBSERVABLE QUEUES This chapter deals with queueing systems, where an arriving customer observes the length of the queue before making his decisions.
European Conference on Queueing Theory 2016
HAL (Le Centre pour la Communication Scientifique Directe), 2016
Kleinrock (1964) proposed a queueing discipline for a single-server queue in which customers from different classes accumulate priority as linear functions of their waiting time. When the server becomes free, it selects the waiting customer with the highest amount of accumulated priority at that instant, provided that the queue is nonempty. For such a queue, Kleinrock developed a recursion for calculating the expected waiting time of customers from each class. More recently, Stanford, Taylor and Ziedins (2014) took another look at this queue, which they termed the Accumulating Priority Queue (APQ), and derived the waiting time distributions for each class. Kleinrock and Finkelstein (1967) also studied an accumulating priority system in which customers' priorities increase as a power-law function of their time in the queue. They established that it is possible to associate a particular linear accumulating priority queue with such a power-law accumulating priority queue, in such a way that the expected waiting times of customers from the different classes are preserved. In this paper, we extend their analysis to characterise the class of nonlinear accumulating priority queues for which an equivalent linear APQ can be found, in the sense that the waiting time distributions for each of the classes are identical in both the linear and nonlinear systems.
Stability of Parallel Queueing Systems with Coupled Service Rates
Discrete Event Dynamic Systems, 2008
This paper considers a parallel system of queues fed by independent arrival streams, where the service rate of each queue depends on the number of customers in all of the queues. Necessary and sufficient conditions for the stability of the system are derived, based on stochastic monotonicity and marginal drift properties of multiclass birth and death processes. These conditions yield a sharp characterization of stability for systems, where the service rate of each queue is decreasing in the number of customers in other queues, and has uniform limits as the queue lengths tend to infinity. The results are illustrated with applications where the stability region may be nonconvex.
A Numerical Approach to Stability of Multi-class Queueing Networks
IEEE Transactions on Automatic Control, 2017
The Multi-class Queueing Network (McQN) arises as a natural multi-class extension of the traditional (single-class) Jackson network. In a single-class network subcriticality (i.e. subunitary nominal workload at every station) entails stability, but this is no longer sufficient when jobs/customers of different classes (i.e. with different service requirements and/or routing scheme) visit the same server; therefore, analytical conditions for stability of McQNs are lacking, in general. In this note we design a numerical (simulation-based) method for determining the stability region of a McQN, in terms of arrival rate(s). Our method exploits certain (stochastic) monotonicity properties enjoyed by the associated Markovian queue-configuration process. Stochastic monotonicity is a quite common feature of queueing models and can be easily established in the single-class framework (Jackson networks); recently, also for a wide class of McQNs, including first-come-first-serve (FCFS) networks, monotonicity properties have been established. Here, we provide a minimal set of conditions under which the method performs correctly. Eventually, we illustrate the use of our numerical method by presenting a set of numerical experiments, covering both single and multi-class networks.
There are three topics in the thesis. In the first topic, we addressed a control problem for a queueing system, known as the "N-system", under the Halfin-Whitt heavy traffic regime and a static priority policy was proposed and is shown to be asymptotically optimal, using weak convergence techniques. In the second topic, we focused on the hospitals, where faster servers(nurses), though work more efficiently, have the heavier workload, and the Randomized Most-Idle (RMI) routing policy was proposed to tackle this unfairness issue, trying to reward faster servers who serve more with less workload. we extended the existing result to show that this desirable property of the RMI policy holds under a system with multiple customer classes using theoretical exact analysis as well as numerical simulations. In the third topic, the problem was to decide an appropriate number of representatives over time according to the prescribed service quality level in the call center. We examined the stability of two methods which were designed to generate appropriate staffing functions on a simulated data and real call center data from an actual bank.
An Asymptotic Analysis of Queues with Delayed Information and Time Varying Arrival Rates
arXiv: Dynamical Systems, 2017
Understanding how delayed information impacts queueing systems is an important area of research. However, much of the current literature neglects one important feature of many queueing systems, namely non-stationary arrivals. Non-stationary arrivals model the fact that customers tend to access services during certain times of the day and not at a constant rate. In this paper, we analyze two two-dimensional deterministic fluid models that incorporate customer choice behavior based on delayed queue length information with time varying arrivals. In the first model, customers receive queue length information that is delayed by a constant Delta. In the second model, customers receive information about the queue length through a moving average of the queue length where the moving average window is Delta. We analyze the impact of the time varying arrival rate and show using asymptotic analysis that the time varying arrival rate does not impact the critical delay unless the frequency of the...
Stability and instability of a two-station queueing network
The Annals of Applied Probability, 2004
This article proves that the stability region of a two-station, five-class reentrant queueing network, operating under a nonpreemptive static buffer priority service policy, depends on the distributions of the interarrival and service times. In particular, our result shows that conditions on the mean interarrival and service times are not enough to determine the stability of a queueing network under a particular policy. We prove that when all distributions are exponential, the network is unstable in the sense that, with probability 1, the total number of jobs in the network goes to infinity with time. We show that the same network with all interarrival and service times being deterministic is stable. When all distributions are uniform with a given range, our simulation studies show that the stability of the network depends on the width of the uniform distribution. Finally, we show that the same network, with deterministic interarrival and service times, is unstable when it is operated under the preemptive version of the static buffer priority service policy. Thus, our examples also demonstrate that the stability region depends on the preemption mechanism used.
2016
We study multi-dimensional stochastic processes that arise in queueing models used in the performance evaluation of wired and wireless networks. The evolution of the stochastic process is determined by the scheduling policy used in the associated queueing network. For general arrival and service processes, we give sufficient conditions in order to compare sample-path wise the workload and the number of users under different policies. This allows us to evaluate the performance of the system under various policies in terms of stability, the mean overall delay and the mean holding cost. We apply the general framework to linear networks, where users of one class require service from several shared resources simultaneously. For the important family of weighted α-fair policies, stability results are derived A shorter version with preliminary results appeared in the proceedings of ValueTools (Verloop et al. 2008).
Waiting Time Analysis of Multi-Class Queues with Impatient Customers
Probability in the Engineering and Informational Sciences, 2013
In this paper, we study three delay systems where different classes of impatient customers arrive according to independent Poisson processes. In the first system, a single server receives two classes of customers with general service time requirements, and follows a non-preemptive priority policy in serving them. Both classes of customers abandon the system when their exponentially distributed patience limits expire. The second system comprises parallel and identical servers providing the same type of service for both classes of impatient customers under the non-preemptive priority policy. We assume exponential service times and consider two cases depending on the time-to-abandon distribution being exponentially distributed or deterministic. In either case, we permit different reneging rates or patience limits for each class. Finally, we consider the first-come-first-served policy in single and multi-server settings. In all models, we obtain the Laplace transform of the virtual waiting time for each class by exploiting the level-crossing method. This enables us to compute the steady-state system performance measures.