Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire (original) (raw)
Related papers
Structure of a cytochrome-based bacterial nanowire
2018
Electrically conductive pili from Geobacter species, termed bacterial “nanowires”, are intensely studied for their biological significance and potential in the development of new materials. We have characterized a unique nanowire from conductive G. sulfurreducens pili preparations by cryo-electron microscopy composed solely of the c-type cytochrome OmcS. We present here, at 3.4 Å resolution, a novel structure of a cytochrome-based filament and discuss its possible role in long-range biological electron transport.Summary sentenceCryo-electron microscopy reveals the remarkable assembly of a c-type cytochrome into filaments comprising a heme-based bacterial nanowire.
Microbial nanowires - electron transport and the role of synthetic analogues
Acta biomaterialia, 2018
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowire...
Physical constraints on charge transport through bacterial nanowires
Faraday Discussions, 2012
Extracellular appendages of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 were recently shown to sustain currents of 10 10 electrons per second over distances of 0.5 microns [El-Naggar et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 18127]. However, the identity of the charge localizing sites and their organization along the "nanowire" remain unknown. We use theory to predict redox cofactor separation distances that would permit charge flow at rates of 10 10 electrons per second over 0.5 microns for voltage biases of ≤1V, using a steady-state analysis governed by a non-adiabatic electron transport mechanism. We find the observed currents necessitate a multi-step hopping transport mechanism, with charge localizing sites separated by less than 1 nm and reorganization energies that rival the lowest known in biology.
Thermally activated charge transport in microbial protein nanowires
Scientific Reports, 2016
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the di...
Long-distance electron transport in individual, living cable bacteria
Proceedings of the National Academy of Sciences of the United States of America, 2018
Electron transport within living cells is essential for energy conservation in all respiring and photosynthetic organisms. While a few bacteria transport electrons over micrometer distances to their surroundings, filaments of cable bacteria are hypothesized to conduct electric currents over centimeter distances. We used resonance Raman microscopy to analyze cytochrome redox states in living cable bacteria. Cable-bacteria filaments were placed in microscope chambers with sulfide as electron source and oxygen as electron sink at opposite ends. Along individual filaments a gradient in cytochrome redox potential was detected, which immediately broke down upon removal of oxygen or laser cutting of the filaments. Without access to oxygen, a rapid shift toward more reduced cytochromes was observed, as electrons were no longer drained from the filament but accumulated in the cellular cytochromes. These results provide direct evidence for long-distance electron transport in living multicellu...
Single-Molecule Mapping of Long-range Electron Transport for a Cytochrome b 562 Variant
Nano letters, 2011
Cytochrome b 562 was engineered to introduce a cysteine residue at a surface-exposed position to facilitate direct selfassembly on a Au(111) surface. The confined protein exhibited reversible and fast electron exchange with a gold substrate over a distance of 20 Å between the heme redox center and the gold surface, a clear indication that a long-range electron-transfer pathway is established. Electrochemical scanning tunneling microscopy was used to map electron transport features of the protein at the single-molecule level. Tunneling resonance was directly imaged and apparent molecular conductance was measured, which both show strong redox-gated effects. This study has addressed the first case of heme proteins and offered new perspectives in singlemolecule bioelectronics.