Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine (original) (raw)

Abstract

Copper(II) complexes of glycyl-L-leucyl-L-histidine (GLH), sarcosyl-L-leucyl-L-histidine (Sar-LH), glycyl-L-phenylalanyl-L-histidine (GFH) and sarcosyl-L-phenylalanyl-L-histidine (Sar-FH) have potential anti-inflammatory activity, which can help to alleviate the symptoms associated with rheumatoid arthritis (RA). From pH 2–11, the MLH, ML, MLH-1 and MLH-2 species formed. The combination of species for each ligand was different, except at the physiological pH, where CuLH-2 predominated for all ligands. The prevalence of this species was supported by EPR, ultraviolet-visible spectrophotometry, and mass spectrometry, which suggested a square planar CuN4 coordination. All ligands have the same basicity for the amine and imidazole-N, but the methyl group of sarcosine decreased the stability of MLH and MLH-2 by 0.1–0.34 and 0.46–0.48 log units, respectively. Phenylalanine increased the stability of MLH and MLH-2 by 0.05–0.29 and 1.19–1.21 log units, respectively. For all ligands, 1H NMR i...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (76)

  1. Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of the dermally absorbed Cu(II) complexes of N5O2 donor ligands-Potential anti-inflammatory drugs. Inorg. Chim. Acta 2009, 362, 125-135. [CrossRef]
  2. Wang, D.; Miller, S.C.; Liu, X.-M.; Anderson, B.; Wang, X.S.; Goldring, S.R. Noveldexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R2. [CrossRef] [PubMed]
  3. Koopman, L.W.; Moreland, W.J. Arthritis and Allied Conditions: A Textbook of Rheumatology, 15th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005.
  4. Morrey, B.; Adams, R. Semiconstrained elbow replacement for distal humeral nonunion. J. Bone Jt. Surg. Br. 1995, 77-B, 67-72.
  5. Zvimba, J.N.; Jackson, G.E. Copper chelating anti-inflammatory agents; N1-(2-aminoethyl)-N2-(pyridin-2-ylmethyl)-ethane-1,2- diamine and N-(2-(2-aminoethylamino)ethyl)picolinamide: An in vitro and in vivo study. J. Inorg. Biochem. 2007, 101, 148-158.
  6. Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of N,N -bis[2 (2-pyridyl)-methyl]pyridine-2,6-dicarboxamide-copper(II) and rheumatoid arthritis. Polyhedron 2008, 27, 453-464. [CrossRef]
  7. Khurana, R.; Berney, S.M. Clinical aspects of rheumatoid arthritis. Pathophysiology 2005, 12, 153-165. [CrossRef]
  8. Weinblatt, M.E.; Kuritzky, L. RAPID: Rheumatoid arthritis. J. Fam. Pract. 2007, 56, S1-S7.
  9. Suresh, E. Diagnosis of early rheumatoid arthritis: What the non-specialist needs to know. JRSM 2004, 97, 421-424. [CrossRef]
  10. Jackson, G.E.; May, P.M.; Williams, D.R. Metal-ligand complexes involved in rheumatoid arthritis-I. J. Inorg. Nucl. Chem. 1978, 40, 1189-1194. [CrossRef]
  11. Hardin, G.L.; Longenecker, J.G. Handbook of drug therapy in rheumatic disease. Pharmacology and clinical aspects, 1st ed.; Little, Brown and Company: London, UK, 1992.
  12. Nordberg, G.F.; Fowler, B.A.; Nordberg, M. (Eds.) Handbook on the Toxicology of Metals, 4th ed.; Elsevier: London, UK; San Diego, CA, USA" 2015.
  13. Lahey, M.E.; Gubler, C.J.; Cartwright, G.E.; Wintrobe, M.M. Studies on copper metabolism. VI. Blood copper in normal human subjects. J. Clin. Invest. 1953, 32, 322-328. [CrossRef]
  14. Weder, J.E.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; MacLachlan, D.; Bramley, R.; Delfs, C.D.; Murray, K.S.; Moubaraki, B.; Warwick, B.; et al. Anti-Inflammatory Dinuclear Copper(II) Complexes with Indomethacin. Synthesis, Magnetism and EPR Spectroscopy. Crystal Structure of the N,N-Dimethylformamide Adduct. Inorg. Chem. 1999, 38, 1736-1744. [CrossRef] [PubMed]
  15. Sorenson, J.R.J. Copper Chelates as Possible Active Forms of the Antiarthritic Agents. J. Med. Chem. 1976, 19, 135-148. [CrossRef]
  16. Jackson, G.E.; May, P.M.; Williams, D.R. Metal-ligand complexes involved in rheumatoid arthritis-VI: Computer models simulating the low molecular weight complexes present in blood plasma for normal and arthritic individuals. J. Inorg. Nucl. Chem. 1978, 40, 1227-1234. [CrossRef]
  17. Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996, 63, 797S-811S. [CrossRef]
  18. Zvimba, J.N.; Jackson, G.E. Thermodynamic and spectroscopic study of the interaction of Cu(II), Ni(II), Zn(II) and Ca(II) ions with 2-amino-N-(2-oxo-2-(2-(pyridin-2-yl)ethyl amino)ethyl)acetamide, a pseudo-mimic of human serum albumin. Polyhedron 2007, 26, 2395-2404. [CrossRef]
  19. Perrone, L.; Mothes, E.; Vignes, M.; Mockel, A.; Figueroa, C.; Miquel, M.-C.; Maddelein, M.-L.; Faller, P. Copper Transfer from Cu-Aβ to Human Serum Albumin Inhibits Aggregation, Radical Production and Reduces Aβ Toxicity. ChemBioChem 2009, 11, 110-118. [CrossRef]
  20. Weder, J.E.; Dillon, C.T.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; Biffin, J.R.; Regtop, H.L.; Davies, N.M. Copper complexes of non-steroidal anti-inflammatory drugs: An opportunity yet to be realized. Coord. Chem. Rev. 2002, 232, 95-126. [CrossRef]
  21. Odisitse, S.; Jackson, G.E.; Govender, T.; Kruger, H.G.; Singh, A. Chemical speciation of copper(II) diaminediamide derivative of pentacycloundecane-A potential anti-inflammatory agent. Dalt. Trans. 2007, 1140-1149. [CrossRef]
  22. Odisitse, S. In Vivo Bio-Distribution Study of 64Cu (II)-Labelled Copper (II) Complexes of Peptides Mimics in Balb/C Mice- Development of Copper Based Anti-Inflammatory Agents. MOJ Bioorganic Org. Chem. 2017, 1, 153-157. [CrossRef]
  23. Gruchlik, A.; Jurzak, M.; Chodurek, E.; Dzierzewicz, Z. Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-alpha-dependent IL-6 secretion in normal human dermal fibroblasts. Acta Pol. Pharm. 2012, 69, 1303-1306. [PubMed]
  24. Hostynek, J.J.; Dreher, F.; Maibach, H.I. Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm. Res. 2011, 60, 79-86. [CrossRef]
  25. Elmagbari, F.M.A. Synthesis and Design of Ligand Copper Complexes as Anti-Inflammatory Drugs, Synthesis and Design of Ligand Copper Complexes as Anti-Inflammatory Drugs. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2015.
  26. Vicatos, G.M. In Vitro Studies of Dermally Absorbed Cu(II) Tripeptide Complexes as Potential Anti-Inflammatory Drugs, In Vitro Studies of Dermally Absorbed Cu(II) Tripeptide Complexes as Potential Anti-Inflammatory Drugs. Master's Thesis, University of Cape Town, Cape Town, South Africa, 2016.
  27. Hammouda, A.N. Development of Copper Peptide Complexes as Anti-Inflammatory Drugs, Development of Copper Peptide Complexes as Anti-Inflammatory Drugs. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2015.
  28. Pickart, L.; Freedman, J.H.; Loker, W.J.; Peisach, J.; Perkins, C.M.; Stenkamp, R.E.; Weinstein, B. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature 1980, 288, 715-717. [CrossRef] [PubMed]
  29. Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. The Human Tripeptide GHK-Cu in Prevention of Oxidative Stress and Degenera- tive Conditions of Aging: Implications for Cognitive Health. Oxid. Med. Cell. Longev. 2012, 2012, 324832. [CrossRef]
  30. Hall, H.K. Potentiometric Determination of the Base Strength of Amines in Non-protolytic Solvents. J. Phys. Chem. 1956, 60, 63-70.
  31. Nakon, R.; Angelici, R.J. Copper(II) complexes of glycylglycine and glycylsarcosine and their methyl esters. Inorg. Chem. 1973, 12, 1269-1274. [CrossRef]
  32. Várnagy, K.; Szabó, J.; Sóvágó, I.; Malandrinos, G.; Hadjiliadis, N.; Sanna, D.; Micera, G. Equilibrium and structural studies on copper(II) complexes of tetra-, penta-and hexa-peptides containing histidyl residues at the C-termini. J. Chem. Soc. Dalt. Trans. 2000, 467-472. [CrossRef]
  33. Turek, M.; Senar, X.L. Potentiometric and Spectroscopic Studies on Di-, Tri-and Tetraglycine with Copper (II) Ions Systems. Food Chem. Biotechnol. 2008, 72, 15-33. [CrossRef]
  34. Sanna, D.; Ágoston, C.G.; Micera, G.; Sóvágó, I. The effect of the ring size of fused chelates on the thermodynamic and spectroscopic properties of peptide complexes of copper(II). Polyhedron 2001, 20, 3079-3090. [CrossRef]
  35. Kozłowski, H.; Bal, W.; Dyba, M.; Kowalik-Jankowska, T. Specific structure-stability relations in metallopeptides. Coord. Chem. Rev. 1999, 184, 319-346. [CrossRef]
  36. Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 3rd ed.; Pearson: London, UK, 2008.
  37. Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1984.
  38. Deeth, R.J.; Hearnshaw, L.J.A. Molecular modelling of Jahn-Teller distortions in Cu(II)N6 complexes: Elongations, compressions and the pathways in between. Dalt. Trans. 2006, 8, 1092-1100. [CrossRef]
  39. Farkas, E.; Csapó, E.; Buglyó, P.; Damante, C.A.; Natale, G. Di Metal-binding ability of histidine-containing peptidehydroxamic acids: Imidazole versus hydroxamate coordination. Inorg. Chim. Acta 2009, 362, 753-762. [CrossRef]
  40. Sigel, H.; Martin, R.B. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 1982, 82, 385-426. [CrossRef]
  41. Prenesti, E.; Daniele, P.G.; Prencipe, M.; Ostacoli, G. Spectrum-structure correlation for visible absorption spectra of copper(II) complexes in aqueous solution. Polyhedron 1999, 18, 3233-3241. [CrossRef]
  42. Billo, E.J. Copper(II) chromosomes and the rule of average environment. Inorg. Nucl. Chem. Lett. 1974, 10, 613-617. [CrossRef]
  43. Hathaway, B.J.; Billing, D.E. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord. Chem. Rev. 1970, 5, 143-207. [CrossRef]
  44. Morrison, R.T.; Boyd, R.N. Organic Chemistry. In Organic Chemistry; Allyn and Bacon: Boston, MA, USA, 1987; pp. 578-580.
  45. Kleckner, I.R.; Foster, M.P. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta-Proteins Proteom. 2011, 1814, 942-968. [CrossRef] [PubMed]
  46. Liang, B.; Bushweller, J.H.; Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 4389-4397. [CrossRef] [PubMed]
  47. Ure, A.M.; Davidson, C.M. (Eds.) Chemical Speciation in the Environment. In Chemical Speciation in the Environment; Blackwell Science Ltd.: Oxford, UK, 2002; p. 46. ISBN 9780470988312.
  48. Wells, M.A.; Jelinska, C.; Hosszu, L.L.P.; Craven, C.J.; Clarke, A.R.; Collinge, J.; Waltho, J.P.; Jackson, G.S. Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4. Biochem. J. 2006, 400, 501-510. [CrossRef] [PubMed]
  49. Zhao, X.Z.; Jiang, T.; Wang, L.; Yang, H.; Zhang, S.; Zhou, P. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J. Mol. Struct. 2010, 984, 316-325. [CrossRef]
  50. Hou, L.; Zagorski, M.G. NMR reveals anomalous copper(II) binding to the amyloid Aβ peptide of Alzheimer's disease. J. Am. Chem. Soc. 2006, 128, 9260-9261. [CrossRef]
  51. Nuclear Magnetic Resonance: An Introduction. Available online: http://instructor.physics.lsa.umich.edu/adv-labs/NMR/Ch1 2_NMRTEC.pdf (accessed on 3 November 2019).
  52. Marusak, R.A.; Doan, K.; Cummings, S.D. Integrated Approach to Coordination Chemistry: An Inorganic Laboratory Guide; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
  53. Elmagbari, F.M.; Hammouda, A.N.; Jackson, G.E.; Bonomo, R.P. Stability, solution structure and X-ray crystallography of a copper (II) diamide complex. Inorg. Chim. Acta 2019, 498, 119132. [CrossRef]
  54. Laussac, J.P.; Haran, R.; Sarkar, B.N.m.r. and e.p.r. investigation of the interaction of copper(II) and glycyl-l-histidyl-l-lysine, a growth-modulating tripeptide from plasma. Biochem. J. 1983, 209, 533-539. [CrossRef] [PubMed]
  55. Szabó, Z. Multinuclear NMR studies of the interaction of metal ions with adenine-nucleotides. Coord. Chem. Rev. 2008, 252, 2362-2380. [CrossRef]
  56. Gizzi, P.; Henry, B.; Rubini, P.; Giroux, S.; Wenger, E. A multi-approach study of the interaction of the Cu(II) and Ni(II) ions with alanylglycylhistamine, a mimicking pseudopeptide of the serum albumine N-terminal residue. J. Inorg. Biochem. 2005, 99, 1182-1192. [CrossRef]
  57. Ross, A.R.S.; Luettgen, S.L. Speciation of cyclo(Pro-Gly)3 and its divalent metal-ion complexes by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1536-1544. [CrossRef] [PubMed]
  58. Demarque, D.P.; Crotti, A.E.M.; Vessecchi, R.; Lopes, J.L.C.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016, 33, 432-455. [CrossRef] [PubMed]
  59. Lavanant, H.; Hecquet, E.; Hoppilliard, Y. Complexes of l-histidine with Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ studied by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 1999, 185-187, 11-23. [CrossRef]
  60. Lavanant, H.; Virelizier, H.; Hoppilliard, Y. Reduction of copper(II) complexes by electron capture in an electrospray ionization source. J. Am. Soc. Mass Spectrom. 1998, 9, 1217-1221. [CrossRef]
  61. Ishiwata, A.; Yamabe, S.; Minato, T.; Machiguchi, T. Norcaradiene intermediates in mass spectral fragmentations of tropone and tropothione. J. Chem. Soc. Perkin Trans. 2001, 2, 2202-2210. [CrossRef]
  62. Miessler, G.L.; Tarr, D.A. Inorganic Chemistry, 3rd ed.; Pearson Education, Inc.: Philippines, Manila, 2004.
  63. Rulíšek, L.; Havlas, Z. Theoretical Studies of Metal Ion Selectivity. 1. DFT Calculations of Interaction Energies of Amino Acid Side Chains with Selected Transition Metal Ions (Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , and Hg 2+ ). J. Am. Chem. Soc. 2000, 122, 10428-10439.
  64. Robertazzi, A.; Magistrato, A.; de Hoog, P.; Carloni, P.; Reedijk, J. Density Functional Theory Studies on Copper Phenanthroline Complexes. Inorg. Chem. 2007, 46, 5873-5881. [CrossRef]
  65. Vogel, A.I. Vogel's Qualitative Inorganic Analysis; 3rd ed.; Longman: London, UK, 1961.
  66. Covington, A.K.; Robinson, R.A. References standards for the electrometric determination, with ion-selective electrodes, of potassium and calcium in blood serum. Anal. Chim. Acta 1975, 78, 219-223. [CrossRef]
  67. Guilbault, G.G.; Kramer, D.N.; Goldberg, P. The application of modified Nernstian equations to the electrochemical determination of enzyme kinetics. J. Phys. Chem. 1963, 67, 1747-1749. [CrossRef]
  68. Lee, Y.H.; Brosset, C. The slope of Gran's plot: A useful function in the examination of precipitation, the water-soluble part of airborne particles, and lake water. Water. Air. Soil Pollut. 1978, 10, 457-469. [CrossRef]
  69. Murray, K.; May, P.M. ESTA: Equilibrium Simulation for Titration Analysis; University of Wales, Institute of Science and Technology (UWIST), Department of Applied Chemistry: Cardiff, UK, 1984.
  70. Lund, A.; Vänngård, T. Note on the Determination of the Principal Fine and Hyperfine Coupling Constants in ESR. J. Chem. Phys. 1965, 42, 2979-2980. [CrossRef]
  71. Bonomo, R.P.; Riggi, F. Study of angular anomalies in the X-band powder EPR spectra of copper (II) complexes with axial symmetry. Lett. Al Nuovo Cim. 1981, 30, 304-310. [CrossRef]
  72. Bonomo, R.P.; Riggi, F. Determination of the perpendicular magnetic parameters for Cu(II) EPR spectra from angular anomalies. Chem. Phys. Lett. 1982, 93, 99-102. [CrossRef]
  73. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 (Revision D.01);
  74. Gaussian, Inc.: Wallingford, CT, USA, 2010.
  75. Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www. chemcraftprog.com (accessed on 2 February 2020).
  76. Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396. [CrossRef] [PubMed]