Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine (original) (raw)
Abstract
Copper(II) complexes of glycyl-L-leucyl-L-histidine (GLH), sarcosyl-L-leucyl-L-histidine (Sar-LH), glycyl-L-phenylalanyl-L-histidine (GFH) and sarcosyl-L-phenylalanyl-L-histidine (Sar-FH) have potential anti-inflammatory activity, which can help to alleviate the symptoms associated with rheumatoid arthritis (RA). From pH 2–11, the MLH, ML, MLH-1 and MLH-2 species formed. The combination of species for each ligand was different, except at the physiological pH, where CuLH-2 predominated for all ligands. The prevalence of this species was supported by EPR, ultraviolet-visible spectrophotometry, and mass spectrometry, which suggested a square planar CuN4 coordination. All ligands have the same basicity for the amine and imidazole-N, but the methyl group of sarcosine decreased the stability of MLH and MLH-2 by 0.1–0.34 and 0.46–0.48 log units, respectively. Phenylalanine increased the stability of MLH and MLH-2 by 0.05–0.29 and 1.19–1.21 log units, respectively. For all ligands, 1H NMR i...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (76)
- Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of the dermally absorbed Cu(II) complexes of N5O2 donor ligands-Potential anti-inflammatory drugs. Inorg. Chim. Acta 2009, 362, 125-135. [CrossRef]
- Wang, D.; Miller, S.C.; Liu, X.-M.; Anderson, B.; Wang, X.S.; Goldring, S.R. Noveldexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R2. [CrossRef] [PubMed]
- Koopman, L.W.; Moreland, W.J. Arthritis and Allied Conditions: A Textbook of Rheumatology, 15th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005.
- Morrey, B.; Adams, R. Semiconstrained elbow replacement for distal humeral nonunion. J. Bone Jt. Surg. Br. 1995, 77-B, 67-72.
- Zvimba, J.N.; Jackson, G.E. Copper chelating anti-inflammatory agents; N1-(2-aminoethyl)-N2-(pyridin-2-ylmethyl)-ethane-1,2- diamine and N-(2-(2-aminoethylamino)ethyl)picolinamide: An in vitro and in vivo study. J. Inorg. Biochem. 2007, 101, 148-158.
- Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of N,N -bis[2 (2-pyridyl)-methyl]pyridine-2,6-dicarboxamide-copper(II) and rheumatoid arthritis. Polyhedron 2008, 27, 453-464. [CrossRef]
- Khurana, R.; Berney, S.M. Clinical aspects of rheumatoid arthritis. Pathophysiology 2005, 12, 153-165. [CrossRef]
- Weinblatt, M.E.; Kuritzky, L. RAPID: Rheumatoid arthritis. J. Fam. Pract. 2007, 56, S1-S7.
- Suresh, E. Diagnosis of early rheumatoid arthritis: What the non-specialist needs to know. JRSM 2004, 97, 421-424. [CrossRef]
- Jackson, G.E.; May, P.M.; Williams, D.R. Metal-ligand complexes involved in rheumatoid arthritis-I. J. Inorg. Nucl. Chem. 1978, 40, 1189-1194. [CrossRef]
- Hardin, G.L.; Longenecker, J.G. Handbook of drug therapy in rheumatic disease. Pharmacology and clinical aspects, 1st ed.; Little, Brown and Company: London, UK, 1992.
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M. (Eds.) Handbook on the Toxicology of Metals, 4th ed.; Elsevier: London, UK; San Diego, CA, USA" 2015.
- Lahey, M.E.; Gubler, C.J.; Cartwright, G.E.; Wintrobe, M.M. Studies on copper metabolism. VI. Blood copper in normal human subjects. J. Clin. Invest. 1953, 32, 322-328. [CrossRef]
- Weder, J.E.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; MacLachlan, D.; Bramley, R.; Delfs, C.D.; Murray, K.S.; Moubaraki, B.; Warwick, B.; et al. Anti-Inflammatory Dinuclear Copper(II) Complexes with Indomethacin. Synthesis, Magnetism and EPR Spectroscopy. Crystal Structure of the N,N-Dimethylformamide Adduct. Inorg. Chem. 1999, 38, 1736-1744. [CrossRef] [PubMed]
- Sorenson, J.R.J. Copper Chelates as Possible Active Forms of the Antiarthritic Agents. J. Med. Chem. 1976, 19, 135-148. [CrossRef]
- Jackson, G.E.; May, P.M.; Williams, D.R. Metal-ligand complexes involved in rheumatoid arthritis-VI: Computer models simulating the low molecular weight complexes present in blood plasma for normal and arthritic individuals. J. Inorg. Nucl. Chem. 1978, 40, 1227-1234. [CrossRef]
- Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996, 63, 797S-811S. [CrossRef]
- Zvimba, J.N.; Jackson, G.E. Thermodynamic and spectroscopic study of the interaction of Cu(II), Ni(II), Zn(II) and Ca(II) ions with 2-amino-N-(2-oxo-2-(2-(pyridin-2-yl)ethyl amino)ethyl)acetamide, a pseudo-mimic of human serum albumin. Polyhedron 2007, 26, 2395-2404. [CrossRef]
- Perrone, L.; Mothes, E.; Vignes, M.; Mockel, A.; Figueroa, C.; Miquel, M.-C.; Maddelein, M.-L.; Faller, P. Copper Transfer from Cu-Aβ to Human Serum Albumin Inhibits Aggregation, Radical Production and Reduces Aβ Toxicity. ChemBioChem 2009, 11, 110-118. [CrossRef]
- Weder, J.E.; Dillon, C.T.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; Biffin, J.R.; Regtop, H.L.; Davies, N.M. Copper complexes of non-steroidal anti-inflammatory drugs: An opportunity yet to be realized. Coord. Chem. Rev. 2002, 232, 95-126. [CrossRef]
- Odisitse, S.; Jackson, G.E.; Govender, T.; Kruger, H.G.; Singh, A. Chemical speciation of copper(II) diaminediamide derivative of pentacycloundecane-A potential anti-inflammatory agent. Dalt. Trans. 2007, 1140-1149. [CrossRef]
- Odisitse, S. In Vivo Bio-Distribution Study of 64Cu (II)-Labelled Copper (II) Complexes of Peptides Mimics in Balb/C Mice- Development of Copper Based Anti-Inflammatory Agents. MOJ Bioorganic Org. Chem. 2017, 1, 153-157. [CrossRef]
- Gruchlik, A.; Jurzak, M.; Chodurek, E.; Dzierzewicz, Z. Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-alpha-dependent IL-6 secretion in normal human dermal fibroblasts. Acta Pol. Pharm. 2012, 69, 1303-1306. [PubMed]
- Hostynek, J.J.; Dreher, F.; Maibach, H.I. Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm. Res. 2011, 60, 79-86. [CrossRef]
- Elmagbari, F.M.A. Synthesis and Design of Ligand Copper Complexes as Anti-Inflammatory Drugs, Synthesis and Design of Ligand Copper Complexes as Anti-Inflammatory Drugs. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2015.
- Vicatos, G.M. In Vitro Studies of Dermally Absorbed Cu(II) Tripeptide Complexes as Potential Anti-Inflammatory Drugs, In Vitro Studies of Dermally Absorbed Cu(II) Tripeptide Complexes as Potential Anti-Inflammatory Drugs. Master's Thesis, University of Cape Town, Cape Town, South Africa, 2016.
- Hammouda, A.N. Development of Copper Peptide Complexes as Anti-Inflammatory Drugs, Development of Copper Peptide Complexes as Anti-Inflammatory Drugs. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2015.
- Pickart, L.; Freedman, J.H.; Loker, W.J.; Peisach, J.; Perkins, C.M.; Stenkamp, R.E.; Weinstein, B. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature 1980, 288, 715-717. [CrossRef] [PubMed]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. The Human Tripeptide GHK-Cu in Prevention of Oxidative Stress and Degenera- tive Conditions of Aging: Implications for Cognitive Health. Oxid. Med. Cell. Longev. 2012, 2012, 324832. [CrossRef]
- Hall, H.K. Potentiometric Determination of the Base Strength of Amines in Non-protolytic Solvents. J. Phys. Chem. 1956, 60, 63-70.
- Nakon, R.; Angelici, R.J. Copper(II) complexes of glycylglycine and glycylsarcosine and their methyl esters. Inorg. Chem. 1973, 12, 1269-1274. [CrossRef]
- Várnagy, K.; Szabó, J.; Sóvágó, I.; Malandrinos, G.; Hadjiliadis, N.; Sanna, D.; Micera, G. Equilibrium and structural studies on copper(II) complexes of tetra-, penta-and hexa-peptides containing histidyl residues at the C-termini. J. Chem. Soc. Dalt. Trans. 2000, 467-472. [CrossRef]
- Turek, M.; Senar, X.L. Potentiometric and Spectroscopic Studies on Di-, Tri-and Tetraglycine with Copper (II) Ions Systems. Food Chem. Biotechnol. 2008, 72, 15-33. [CrossRef]
- Sanna, D.; Ágoston, C.G.; Micera, G.; Sóvágó, I. The effect of the ring size of fused chelates on the thermodynamic and spectroscopic properties of peptide complexes of copper(II). Polyhedron 2001, 20, 3079-3090. [CrossRef]
- Kozłowski, H.; Bal, W.; Dyba, M.; Kowalik-Jankowska, T. Specific structure-stability relations in metallopeptides. Coord. Chem. Rev. 1999, 184, 319-346. [CrossRef]
- Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 3rd ed.; Pearson: London, UK, 2008.
- Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1984.
- Deeth, R.J.; Hearnshaw, L.J.A. Molecular modelling of Jahn-Teller distortions in Cu(II)N6 complexes: Elongations, compressions and the pathways in between. Dalt. Trans. 2006, 8, 1092-1100. [CrossRef]
- Farkas, E.; Csapó, E.; Buglyó, P.; Damante, C.A.; Natale, G. Di Metal-binding ability of histidine-containing peptidehydroxamic acids: Imidazole versus hydroxamate coordination. Inorg. Chim. Acta 2009, 362, 753-762. [CrossRef]
- Sigel, H.; Martin, R.B. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 1982, 82, 385-426. [CrossRef]
- Prenesti, E.; Daniele, P.G.; Prencipe, M.; Ostacoli, G. Spectrum-structure correlation for visible absorption spectra of copper(II) complexes in aqueous solution. Polyhedron 1999, 18, 3233-3241. [CrossRef]
- Billo, E.J. Copper(II) chromosomes and the rule of average environment. Inorg. Nucl. Chem. Lett. 1974, 10, 613-617. [CrossRef]
- Hathaway, B.J.; Billing, D.E. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord. Chem. Rev. 1970, 5, 143-207. [CrossRef]
- Morrison, R.T.; Boyd, R.N. Organic Chemistry. In Organic Chemistry; Allyn and Bacon: Boston, MA, USA, 1987; pp. 578-580.
- Kleckner, I.R.; Foster, M.P. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta-Proteins Proteom. 2011, 1814, 942-968. [CrossRef] [PubMed]
- Liang, B.; Bushweller, J.H.; Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 4389-4397. [CrossRef] [PubMed]
- Ure, A.M.; Davidson, C.M. (Eds.) Chemical Speciation in the Environment. In Chemical Speciation in the Environment; Blackwell Science Ltd.: Oxford, UK, 2002; p. 46. ISBN 9780470988312.
- Wells, M.A.; Jelinska, C.; Hosszu, L.L.P.; Craven, C.J.; Clarke, A.R.; Collinge, J.; Waltho, J.P.; Jackson, G.S. Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4. Biochem. J. 2006, 400, 501-510. [CrossRef] [PubMed]
- Zhao, X.Z.; Jiang, T.; Wang, L.; Yang, H.; Zhang, S.; Zhou, P. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J. Mol. Struct. 2010, 984, 316-325. [CrossRef]
- Hou, L.; Zagorski, M.G. NMR reveals anomalous copper(II) binding to the amyloid Aβ peptide of Alzheimer's disease. J. Am. Chem. Soc. 2006, 128, 9260-9261. [CrossRef]
- Nuclear Magnetic Resonance: An Introduction. Available online: http://instructor.physics.lsa.umich.edu/adv-labs/NMR/Ch1 2_NMRTEC.pdf (accessed on 3 November 2019).
- Marusak, R.A.; Doan, K.; Cummings, S.D. Integrated Approach to Coordination Chemistry: An Inorganic Laboratory Guide; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
- Elmagbari, F.M.; Hammouda, A.N.; Jackson, G.E.; Bonomo, R.P. Stability, solution structure and X-ray crystallography of a copper (II) diamide complex. Inorg. Chim. Acta 2019, 498, 119132. [CrossRef]
- Laussac, J.P.; Haran, R.; Sarkar, B.N.m.r. and e.p.r. investigation of the interaction of copper(II) and glycyl-l-histidyl-l-lysine, a growth-modulating tripeptide from plasma. Biochem. J. 1983, 209, 533-539. [CrossRef] [PubMed]
- Szabó, Z. Multinuclear NMR studies of the interaction of metal ions with adenine-nucleotides. Coord. Chem. Rev. 2008, 252, 2362-2380. [CrossRef]
- Gizzi, P.; Henry, B.; Rubini, P.; Giroux, S.; Wenger, E. A multi-approach study of the interaction of the Cu(II) and Ni(II) ions with alanylglycylhistamine, a mimicking pseudopeptide of the serum albumine N-terminal residue. J. Inorg. Biochem. 2005, 99, 1182-1192. [CrossRef]
- Ross, A.R.S.; Luettgen, S.L. Speciation of cyclo(Pro-Gly)3 and its divalent metal-ion complexes by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1536-1544. [CrossRef] [PubMed]
- Demarque, D.P.; Crotti, A.E.M.; Vessecchi, R.; Lopes, J.L.C.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016, 33, 432-455. [CrossRef] [PubMed]
- Lavanant, H.; Hecquet, E.; Hoppilliard, Y. Complexes of l-histidine with Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ studied by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 1999, 185-187, 11-23. [CrossRef]
- Lavanant, H.; Virelizier, H.; Hoppilliard, Y. Reduction of copper(II) complexes by electron capture in an electrospray ionization source. J. Am. Soc. Mass Spectrom. 1998, 9, 1217-1221. [CrossRef]
- Ishiwata, A.; Yamabe, S.; Minato, T.; Machiguchi, T. Norcaradiene intermediates in mass spectral fragmentations of tropone and tropothione. J. Chem. Soc. Perkin Trans. 2001, 2, 2202-2210. [CrossRef]
- Miessler, G.L.; Tarr, D.A. Inorganic Chemistry, 3rd ed.; Pearson Education, Inc.: Philippines, Manila, 2004.
- Rulíšek, L.; Havlas, Z. Theoretical Studies of Metal Ion Selectivity. 1. DFT Calculations of Interaction Energies of Amino Acid Side Chains with Selected Transition Metal Ions (Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , and Hg 2+ ). J. Am. Chem. Soc. 2000, 122, 10428-10439.
- Robertazzi, A.; Magistrato, A.; de Hoog, P.; Carloni, P.; Reedijk, J. Density Functional Theory Studies on Copper Phenanthroline Complexes. Inorg. Chem. 2007, 46, 5873-5881. [CrossRef]
- Vogel, A.I. Vogel's Qualitative Inorganic Analysis; 3rd ed.; Longman: London, UK, 1961.
- Covington, A.K.; Robinson, R.A. References standards for the electrometric determination, with ion-selective electrodes, of potassium and calcium in blood serum. Anal. Chim. Acta 1975, 78, 219-223. [CrossRef]
- Guilbault, G.G.; Kramer, D.N.; Goldberg, P. The application of modified Nernstian equations to the electrochemical determination of enzyme kinetics. J. Phys. Chem. 1963, 67, 1747-1749. [CrossRef]
- Lee, Y.H.; Brosset, C. The slope of Gran's plot: A useful function in the examination of precipitation, the water-soluble part of airborne particles, and lake water. Water. Air. Soil Pollut. 1978, 10, 457-469. [CrossRef]
- Murray, K.; May, P.M. ESTA: Equilibrium Simulation for Titration Analysis; University of Wales, Institute of Science and Technology (UWIST), Department of Applied Chemistry: Cardiff, UK, 1984.
- Lund, A.; Vänngård, T. Note on the Determination of the Principal Fine and Hyperfine Coupling Constants in ESR. J. Chem. Phys. 1965, 42, 2979-2980. [CrossRef]
- Bonomo, R.P.; Riggi, F. Study of angular anomalies in the X-band powder EPR spectra of copper (II) complexes with axial symmetry. Lett. Al Nuovo Cim. 1981, 30, 304-310. [CrossRef]
- Bonomo, R.P.; Riggi, F. Determination of the perpendicular magnetic parameters for Cu(II) EPR spectra from angular anomalies. Chem. Phys. Lett. 1982, 93, 99-102. [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 (Revision D.01);
- Gaussian, Inc.: Wallingford, CT, USA, 2010.
- Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www. chemcraftprog.com (accessed on 2 February 2020).
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396. [CrossRef] [PubMed]