Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas (original) (raw)
2016, Global and Planetary Change
The data about the Paleogene basin evolution, palaeogeography, and geodynamics of the Western Carpathian and Northern Pannonian domains are summarized, re-evaluated, supplemented, and newly interpreted. The presented concept is illustrated by a series of palinspastic and palaeotopographic maps. The Paleogene development of external Carpathian zones reflects gradual subduction of several oceanic realms (Vahic, Iňačovce-Kričevo, Szolnok, Magura, and Silesian-Krosno) and growth of the orogenic accretionary wedge (Pieniny Klippen Belt, Iňačovce-Kričevo Unit, Szolnok Belt, and Outer Carpathian Flysch Belt). Evolution of the Central Western Carpathians is characterized by the Paleocene-Early Eocene opening of several wedge-top basins at the accretionary wedge tip, controlled by changing compressional, strike-slip, and extensional tectonic regimes. During the Lutetian, the diverging translations of the northward moving Eastern Alpine and northeast to eastward shifted Western Carpathian segment generated crustal stretching at the Alpine-Carpathian junction with foundation of relatively deep basins. These basins enabled a marine connection between the Magura oceanic realm and the Northern Pannonian domain, and later also with the Dinaridic foredeep. Afterwards, the Late Eocene compression brought about uplift and exhumation of the basement complexes at the Alpine-Carpathian junction. Simultaneously, the eastern margin of the stretched Central Western Carpathians underwent disintegration, followed by opening of a fore-arc basinthe Central Carpathian Paleogene Basin. In the Northern Hungarian Paleogene retro-arc basin, turbidites covered a carbonate platform in the