109 The Burkholderia cepacia small colony variants (SCV) are a more pathogenic bacterial form that may facilitate persistent respiratory infections in CF patients (original) (raw)

Proteomic Profiling of Burkholderia cenocepacia Clonal Isolates with Different Virulence Potential Retrieved from a Cystic Fibrosis Patient during Chronic Lung Infection. PLoS One 8: e83065. doi:10.1371/journal.pone.0083065

2013

Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient’s death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. The...

Quantitative proteomics (2-D DIGE) reveals molecular strategies employed by Burkholderia cenocepacia to adapt to the airways of cystic fibrosis patients under antimicrobial therapy

PROTEOMICS, 2011

Chronic respiratory infections caused by Burkholderia cenocepacia in patients with cystic fibrosis (CF) are characterized by low responsiveness to antibiotic therapy and, in general, to a more rapid decline of lung function. To get clues into the molecular mechanisms underlying the adaptive strategies employed to deal with the stressing conditions of the CF lung including antibiotic therapy, quantitative proteomics (2-D DIGE) was used to compare the expression programs of two clonal isolates retrieved from a chronically infected CF patient. Isolate IST439 was the first bacterium recovered while the clonal variant IST4113 was obtained after 3 years of persistent infection and intravenous therapy with ceftazidime/gentamicin. This isolate exhibits higher resistance levels towards different classes of antimicrobials. Proteins of the functional categories Energy metabolism, Translation, Nucleotide synthesis, Protein folding and stabilization are more abundant in IST4113, compared with IST439, suggesting an increased protein synthesis, DNA repair and stress resistance in IST4113. The level of proteins involved in peptidoglycan, membrane lipids and lipopolysaccharide synthesis is also altered and proteins involved in iron binding and transport are more abundant in IST4113. The quantitative comparison of the two proteomes suggests a genetic adaptation leading to increased antimicrobial resistance and bacterial persistence in the CF airways.

Proteomic Profiling of Burkholderia cenocepacia Clonal Isolates with Different Virulence Potential Retrieved from a Cystic Fibrosis Patient during Chronic Lung Infection

PLoS ONE, 2013

Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient's death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.

What matters in chronic Burkholderia cenocepacia infection in cystic fibrosis: Insights from comparative genomics

PLOS Pathogens

Burkholderia cenocepacia causes severe pulmonary infections in cystic fibrosis (CF) patients. Since the bacterium is virtually untreatable by antibiotics, chronic infections persist for years and might develop into fatal septic pneumonia (cepacia syndrome, CS). To devise new strategies to combat chronic B. cenocepacia infections, it is essential to obtain comprehensive knowledge about their pathogenesis. We conducted a comparative genomic analysis of 32 Czech isolates of epidemic clone B. cenocepacia ST32 isolated from various stages of chronic infection in 8 CF patients. High numbers of large-scale deletions were found to occur during chronic infection, affecting preferentially genomic islands and nonessential replicons. Recombination between insertion sequences (IS) was inferred as the mechanism behind deletion formation; the most numerous IS group was specific for the ST32 clone and has undergone transposition burst since its divergence. Genes functionally related to transition metal metabolism were identified as hotspots for deletions and IS insertions. This functional category was also represented among genes where nonsynonymous point mutations and indels occurred parallelly among patients. Another category exhibiting parallel mutations was oxidative stress protection; mutations in catalase KatG resulted in impaired detoxification of hydrogen peroxide. Deep sequencing revealed substantial polymorphism in genes of both categories within the sputum B. cenocepacia ST32 populations, indicating extensive adaptive evolution. Neither oxidative stress response nor transition metal metabolism genes were previously reported to undergo parallel evolution during chronic CF infection. Mutations in katG and copper metabolism genes were overrepresented in patients where chronic infection developed into CS. Among professional phagocytes, macrophages use both hydrogen peroxide and copper for their bactericidal activity; our results thus tentatively point to macrophages as suspects in pathogenesis towards the fatal CS.

Variation of Burkholderia cenocepacia virulence potential during cystic fibrosis chronic lung infection

Virulence, 2016

During long-term lung infection in cystic fibrosis (CF) patients, Burkholderia cenocepacia faces multiple selective pressures in this highly stressful and fluctuating environment. As a consequence, the initial infecting strain undergoes genetic changes that result in the diversification of genotypes and phenotypes. Whether this clonal expansion influences the pathogenic potential is unclear. The virulence potential of 39 sequential B. cenocepacia (recA lineage IIIA) isolates, corresponding to three different clones retrieved from three chronically infected CF patients was compared in this study using the non-mammalian infection hosts Galleria mellonella and Caenorhabditis elegans. The isolates used in this retrospective study were picked randomly from selective agar plates as part of a CF Center routine, from the onset of infection until patients' death after 3.5 and 7.5 years or the more recent isolation date after 12.5 years of chronic infection. The infection models proved us...

Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis

PloS one, 2016

Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters re...

Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review

Genes, 2017

Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.

The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients

Journal of Bacteriology, 2009

Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.