Production of Potentially Prebiotic Condensed Phosphates by Phosphorus Redox Chemistry (original) (raw)

Oxidative Phosphorus Chemistry Perturbed by Minerals

Life

Life is a complex, open chemical system that must be supported with energy inputs. If one fathoms how simple early life must have been, the complexity of modern-day life is staggering by comparison. A minimally complex system that could plausibly provide pyrophosphates for early life could be the oxidation of reduced phosphorus sources such as hypophosphite and phosphite. Like all plausible prebiotic chemistries, this system would have been altered by minerals and rocks in close contact with the evolving solutions. This study addresses the different types of perturbations that minerals might have on this chemical system. This study finds that minerals may inhibit the total production of oxidized phosphorus from reduced phosphorus species, they may facilitate the production of phosphate, or they may facilitate the production of pyrophosphate. This study concludes with the idea that mineral perturbations from the environment increase the chemical complexity of this system.

Redox chemistry in the phosphorus biogeochemical cycle

Proceedings of the National Academy of Sciences of the United States of America, 2014

The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine--PH3--a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C-P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studi...