On joint probability distribution of the number of vertices and area of the convex hulls generated by a Poisson point process (original) (raw)

Abstract

Consider a convex hull generated by a homogeneous Poisson point process in a cone in the plane. In the present paper the central limit theorem is proved for the joint probability distribution of the number of vertices and the area of a convex hull in a cone bounded by the disk of radius T (the center of the disk is at the cone vertex), for T → ∞. From the results of the present paper the previously known results of Groeneboom (1988) and Cabo and Groeneboom (1994) are followed, in which the central limit theorem was proved for the number of vertices and the area of the convex hull in a square by approximating the binomial point process by a homogeneous Poisson point process.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (18)

  1. Buchta, C., 2005. An identity relating moments of functionals of convex hulls. Discrete Comput. Geom. (33), 125-142.
  2. Buchta, C., 2013. Exact formulae for variances of functionals of convex hulls. Adv. Appl. Probab. 45 (4), 917-924.
  3. Cabo, A.J., Groeneboom, P., 1994. Limit theorems for functiohals of convex hulls. Probab. Theory Related Fields 100, 31-55.
  4. Carnal, H., 1970. Die konvexe hulle von n rotations symmetrisch verteilten Punkten. Z. Wahrscheinlichkeits theorie verw. Geb. (15), 168-176.
  5. Efron, B., 1965. The convex hull of a random set of points. Biometrika 52, 331-343.
  6. Feller, W., 1968. An Introduction to Probability Theory and its Applications, Vol. I, New York-London-Sydney.
  7. Groeneboom, P., 1988. Limit theorems for convex hulls. Probab. Theory Related Fields 79 (3), 327-368.
  8. Groeneboom, P., 2012. Convex hulls of uniform samples from convex polygon. Adv. Appl. Probab. 44 (2), 330-342.
  9. Hsing, T., 1994. On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Probab. 4 (2), 478-493.
  10. Hueter, I., 1994. The convex hull of a normal sample. Adv. Appl. Probab. 26, 855-875.
  11. Kruglov, V.M., Korolev, V.Yu., 1990. Limit Theorems for Random Sums. Izdatel'stvo Moskovskogo Universiteta, Moscow (in Russian).
  12. Nagaev, A.V., 1995. Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain. Ann. Inst. Statist. Math. 47 (1), 21-29.
  13. Nagaev, A.V., Khamdamov, I.M., 1991. Limit Theorems for Functionals of Random Convex Hulls. Uzbekistan Academy of Sciences V.I.Romanovskiy Institute of Mathematics, Tashkent, Preprint, (in Russian).
  14. Pardon, J., 2011. Central limit theorems for random polygons in an arbitrary convex set. Ann. Probab. 39 (3), 881-903.
  15. Pardon, J., 2012. Central limit theorems for uniform model random polygons. J. Theor. Probab. 25, 823-833.
  16. Petrov, V.V., 1975. Sums of Independent Random Variables. Springer-Verlag Berlin Heidelberg New York.
  17. Renyi, A., Sulanke, R., 1963. Uber die konvexe Hulle von n zufalliggewahlten Punkten. Z. Wahrscheinlichkeitstheor. Verw. Geb. 2, 75-84.
  18. Schneider, R., 1987. Random Approximation of Convex Sets. Mathematical Institute, Albert-Ludwigs University, Freiburg im Breisgau, Preprint.