Keratinocytes and head and neck squamous cell carcinoma cells regulate urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in fibroblasts (original) (raw)

Interleukin-1-mediated effects of normal oral keratinocytes and head and neck squamous carcinoma cells on extracellular matrix related gene expression in fibroblasts

Oral Oncology, 2012

Objectives: The composition of tumor stroma and the activity of tumor associated fibroblasts are important for tumor growth. Interactions between carcinoma cells and fibroblasts regulate the turnover of extracellular matrix (ECM). Here, the in vitro effects of oral squamous cell carcinoma (SCC) cells (UT-SCC-30 and UT-SCC-87) on fibroblast expression of genes for ECM components and connective tissue growth factor (CTGF/CCN2), were compared to those of normal oral keratinocytes (NOK). Materials and Methods: Cocultures with fibroblasts in collagen gels and keratinocytes with the two cell types separated by a semi permeable membrane were used, and relative gene expression was measured with real-time PCR. Results: All investigated genes were regulated by NOK and the SCCs. The downregulation of pro-collagens a1(I) and a1(III) was more pronounced in cocultures with NOK, while the expression of CCN2 and fibronectin was downregulated by both NOK and the SCCs to a similar extent. UT-SCC-87, but not UT-SCC-30, secreted significantly more IL-1a than NOK. A recombinant interleukin-1 receptor antagonist reversed many of the observed effects on fibroblast gene expression suggesting involvement of IL-1 in cocultures with NOK as well as with SCCs. Conclusion: The observed differential effects on fibroblast gene expression suggest that NOK are more antifibrotic compared to UT-SCC-30 and UT-SCC-87. These findings may contribute to a better understanding of the mechanisms behind ECM turnover in tumors.

Role and regulation of expression of 92-kDa type-IV collagenase (MMP-9) in 2 invasive squamous-cell-carcinoma cell lines of the oral cavity

International Journal of Cancer, 1993

The present study was undertaken to determine the role of the metalloproteinase MMP-9 in the invasive phenotype of squamous-cell carcinoma of the oral cavity and the regulation of its expression. Zymographic analysis of conditioned medium from 2 highly invasive squamous-cell-carcinoma cell lines indicated large amounts of an enzyme which was indistinguishable, in size (92 kDa) from the MMP-9 pro-enzyme. Conversion of the 92-kDa gelatinase into a lower-molecular-weight species (84 kDa), identical in size to the activated gelatinase, was evident when both cell lines, which are avid secretors of urokinase, were cultured in the presence of plasminogen. Penetration of an extracellular-matrix-coated filter was dramatically reduced in the presence of the collagenase inhibitor, tissue inhibitor of metalloproteinase-2, suggesting a critical role for MMP-9 in the invasive process. Immunohistochemical studies demonstrating the presence of MMP-9 in tumor cells of resected squamous-cell cancers suggested that secretion of this collagenase by cells in vitro was reflective of the in vivo setting. Since several phorbol-ester response elements are present in the MMP-9 promoter, we determined the role of protein-kinase-C pathways in the regulation of MMP-9 expression in cultured SCC. Treatment of cells with PMA resulted in a more-than-20-fold increase in the level of protein and mRNA. Conversely, culturing of cells in the presence of the protein-kinase-C inhibitor, calphostin-C, led to a dose-dependent decrease in the amount of MMP-9 mRNA and protein, suggesting that the constitutive expression of this collagenase reflects activation of this signal transduction pathway. In summary, our data suggest that, for a sub-population of squamous-cell carcinomas, secreted MMP-9 is an important determinant of the invasive phenotype, and that the expression of this metalloproteinase is regulated by protein-kinase-C pathways. © 1993 Wiley-Liss, Inc.

Differential regulation of plasminogen activation in normal keratinocytes and SCC-4 cells by fibroblasts

1995

The ability of p53 to activate or repress transcription suggests that its biological function as tumor suppressor is in part accomplished by regulating a number of genes including such required for inhibition of cell growth. We here give evidence that p53 also may regulate genes responsible for the proteolytic degradation of the extracellular matrix, which is considered a crucial feature for local invasion and metastasis of neoplastic cells. An important and highly regulated cascade of such proteolytic events involves the plasminogen activator system. We show that wild-type p53 represses transcription from the enhancer and promoter of the human urokinase-type (u-PA) and the tissue-type plasminogen activator (t-PA) gene through a non-DNA binding mechanism. Oncogenic mutants lost the repressing activity. In contrast, wild-type but not mutant p53 specifically binds to and activates the promoter of the plasminogen activator inhibitor type-1 (PAI-1) gene. Interestingly, one of the p53 mutants (273his) inhibited PAI-1 promoter activity. Our results suggest that altered function of oncogenic forms of p53 may lead to altered expression of the plasminogen activators and their inhibitor(s) and thus to altered activation of the plasminogen/plasmin system during tumor progression.

Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma

Experimental cell research, 2012

Co-culture of periodontal ligament (PDL) fibroblasts and SCC-25 oral squamous carcinoma cells (OSCC), results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs). Paracrin circuits between CAFs and OSCC cells were hypothesized to regulate the gene expression of matrix remodeling enzymes in their co-culture, which was performed for 7 days, followed by analysis of the mRNA/protein expression and activity of metalloproteinases (MMPs), their tissue inhibitors (TIMPs) and other relevant genes. Interleukin1-β, transforming growth factor-β1, fibronectin and αvβ6 integrin have shown to be involved in the regulation of the MMP and TIMP gene expression in co-culture of CAFs and tumor cells. In addition, these cells also cooperated in activation of MMP pro-enzymes. It is particularly interesting that the fibroblast-produced inactive MMP-2 has been activated by the tumor-cell-produced membrane-type 1 matrix metalloproteinase (MT1-MMP). The crosstalk between cancer- and the surrounding fibroblast stromal-cells is essential for the fine tuning of cancer cells invasivity.Summary of the suggested mechanism for the regulation of MMPs and TIMPs in the paracrine interplay between SCC-25 cells and fibroblasts. MMP-9 showed a tumor specific expression, regulated presumably by the fibronectin ITGA5B6 pathway. The ITGA5 was inducible in both SCC-25 and PDL fibroblasts in co-culture, but ITGB6 expression was tumor (SCC-25) specific. Based on a previous report [41], MMP-9 might be activated in the interaction with CD-44, and according to our gelatinase assay results, it remains bound with the tumor cells (A). The results of this study suggest that MMP-2 is secreted in its pro- (inactive-) form by CAFs surrounding the tumor cells, and at a lower extent also by the tumor cells themselves. Activation of MMP-2 either requires MT1-MMP localized on the SCC-25 cancer cells [31], or integrins, where the involvement of αv integrins (ITGA5) is expected (A).MMPs-1, 3 and TIMPs-1, 3 are produced in the PDL fibroblasts, and their expression might be regulated by inflammatory cytokines, including IL1-β produced by SCC-25 cells. The expression of TIMP-1 and TIMP-3 is 20–70-times higher than that of MMPs-1 and 3. The gene expression of MMP-1; 2, TIMP-1 and TIMP-3 was reduced by dexamethasone (DEX) (B).

Regulation of urokinase-type plasminogen activator expression in squamous-cell carcinoma of the oral cavity

International Journal of Cancer, 1993

The urokinase-type plasminogen activator (uPA) system plays an important role in tumor cell invasion, metastases, and angiogenesis. uPA, uPA receptor, and plasminogen activator inhibitor 1 (PAI-1) are prognostic factors in different solid tumors, e.g., renal cell carcinomas (RCCs). von Hippel-Lindau (VHL) disease is an inherited cancer syndrome that is characterized by extensively vascularized tumors, including hemangioblastomas and RCCs. In 75% of sporadic RCCs, the VHL gene is also inactivated. It has been recognized in sporadic RCC that PAI-1 mRNA levels are up-regulated and uPA mRNA levels are down-regulated. We determined the role of the VHL tumor suppressor gene in the regulation of the uPA system in RCC.

Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes

Histochemistry and Cell Biology, 2010

Epithelial-mesenchymal interaction between stromal fibroblasts and cancer cells influences the functional properties of tumor epithelium, including the tumor progression and spread. We compared fibroblasts prepared from stroma of squamous cell carcinoma and normal dermal fibroblasts concerning their biological activity toward normal keratinocytes assessed by immunocytochemistry and profiling of gene activation for growth factors/ cytokines by microarray chip technology. IGF-2 and BMP-4 were determined as candidate factors responsible for tumor-associated fibroblast activity that influences normal epithelia. This effect was confirmed by addition of recombinant IGF-2 and BMP4, respectively, to the culture medium. This hypothesis was also verified by inhibition experiments where blocking antibodies were employed in the medium conditioned by cancer-associated fibroblast. Presence of these growth factors was also detected in tumor samples.

Matrix Metalloproteinase 2 (Gelatinase A) Is Related to Migration of Keratinocytes

Experimental Cell Research, 1999

The role of matrix metalloproteinases (MMPs) in cell migration was studied by measuring cell growth, migration, and production of MMP-2 and -9 in oral mucosal and skin keratinocytes cultured in the presence of synthetic MMP inhibitors. MMP-2 was the major gelatinolytic MMP produced by these cells while MMP-9 was produced at a low basal level. Inhibitor effects on MMP-9 production were therefore studied in keratinocytes stimulated by tumor necrosis factor ␣ (TNF␣). Tetracycline analogues at concentrations that inhibited the production of MMP-2 but not MMP-9 were able to drastically inhibit migration of both mucosal and skin keratinocytes. Tetracycline analogues also inhibited keratinocyte growth, an effect not found for the other inhibitors tested. Heterocyclic carbonate-derived compounds (LWs) that inhibited MMP-9 but not MMP-2 production had no effect on cell migration. Batimastat, a potent MMP inhibitor, did not have any effect on MMP production or cell growth but did inhibit keratinocyte migration. Tumor growth factor ␤ (TGF␤) increased keratinocyte migration as well as both cell-associated and secreted MMP-2 production in wounded cell cultures. The secreted enzyme was partially converted into an active form. In this model batimastat totally blocked TGF␤-promoted keratinocyte migration. Immunostaining of keratinocytes advancing into the wound revealed that MMP-2 was localized in extracellular matrix contactlike structures against the endogenously produced laminin-5-rich matrix. MMP-9 was localized diffusely along the cell membranes. Using in situ hybridization we observed that in chronically inflamed human gingiva MMP-2 is expressed in epithelium extending into subepithelial connective tissue. These results suggest that MMP-2 plays a specific role in epithelial migration, possibly by detaching the advancing cells from the pericellular matrix or by activating other MMPs.