Electrostatic interaction effects on the size distribution of self-assembled giant unilamellar vesicles (original) (raw)
The influence of electrostatic conditions (salt concentration of the solution and vesicle surface charge density) on the size distribution of self-assembled giant unilamellar vesicles (GUVs) is considered. The membranes of GUVs are synthesized by a mixture of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine in a physiological buffer using the natural swelling method. The experimental results are presented in the form of a set of histograms. The log-normal distribution is used for statistical treatment of results. It is obtained that the decrease of salt concentration and the increase of vesicle surface charge density of the membranes increase the average size of the GUV population. To explain the experimental results, a theory using the Helmholtz free energy of the system describing the GUV vesiculation is developed. The size distribution histograms and average size of GUVs under various conditions are fitted with the proposed theory. It is shown that the variation of the bending modulus due to changing of electrostatic parameters of the system is the main factor causing a change in the average size of GUVs.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.