Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training (original) (raw)
Related papers
2012
Adret P, Meliza CD, Margoliash D. Song tutoring in presinging zebra finch juveniles biases a small population of higher-order songselective neurons toward the tutor song. We explored physiological changes correlated with song tutoring by recording the responses of caudal nidopallium neurons of zebra finches aged P21-P24 (days post hatching) to a broad spectrum of natural and synthetic stimuli. Those birds raised with their fathers tended to show behavioral evidence of song memorization but not of singing; thus auditory responses were not confounded by the birds' own vocalizations. In study 1, 37 of 158 neurons (23%) in 17 of 22 tutored and untutored birds were selective for only 1 of 10 stimuli comprising broadband signals, early juvenile songs and calls, female calls, and adult songs. Approximately 30% of the selective neurons (12/37 neurons in 9 birds) were selective for adult conspecific songs. All these were found in the song system nuclei HVC and paraHVC. Of 122 neurons (17 birds) in tutored birds, all of the conspecific songselective neurons (8 neurons in 6 birds) were selective for the adult tutor song; none was selective for unfamiliar song. In study 2 with a different sampling strategy, we found that 11 of 12 song-selective neurons in 6 of 7 birds preferred the tutor song; none preferred unfamiliar or familiar conspecific songs. Most of these neurons were found in caudal lateral nidopallium (NCL) below HVC. Thus by the time a bird begins to sing, there are small numbers of tutor songselective neurons distributed in several forebrain regions. We hypothesize that a small population of higher-order auditory neurons is innately selective for complex features of behaviorally relevant stimuli and these responses are modified by specific perceptual/social experience during development. birdsong learning; song system; template theory; vocal development DEVELOPMENTAL LEARNING is characterized by restricted periods of heightened plasticity during which the structure of sensory experience has long-term effects on neuronal connectivity and the representation of sensory stimuli.
2013
OF SOCIAL VOCALIZATIONS IN THE SONGBIRD FOREBRAIN by BRITTANY ALICIA BELL A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Psychology Written under the direction of David S. Vicario, Ph.D. And approved by _______________________________ _______________________________ _______________________________
Behavioural processes, 2018
Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, s...
A novel paradigm for auditory discrimination training with social reinforcement in songbirds
2014
Zebra finches are a highly social, gregarious, species and eagerly engage in vocal communication. We have developed a training apparatus that allows training zebra finches to discriminate socially reinforced and aversive vocal stimuli. In our experiments, juvenile male zebra finches were trained to discriminate a song that was followed by a brief air puff (aversive) and a song that allowed them to stay in visual contact with another bird, 'audience' (social song). During training, the birds learned quickly to avoid air puffs by escaping the aversive song within 2 sec. They escaped significantly more aversive songs than socially reinforced ones, and this effect grew stronger with the number of training sessions. Therefore, we propose this training procedure as an effective method to teach zebra finches to discriminate between different auditory stimuli, which may also be used as a broader paradigm for addressing social reinforcement learning. The apparatus can be built from c...
Current Opinion in Neurobiology, 2004
Songbirds are extraordinary vocalists and sensitive listeners, singing to communicate identity, engage other birds in acoustical combat, and attract mates. These processes involve auditory plasticity in that birds rapidly learn to discriminate novel from familiar songs. Songbirds also are one of the few non-human animals that use auditory feedback to learn their vocalizations, thus auditory-vocal interactions are likely to be important to vocal learning. Recent advances strengthen the connection between song recognition and processing of birdsong in the auditory telencephalon. New insights also have emerged into the mechanisms underlying the 'gating' of auditory responses and the emergence of highly selective responses, two processes that could facilitate auditory feedback important to song learning.
Localized neuronal activation in the zebra finch brain is related to the strength of song learning
Proceedings of the National Academy of Sciences, 2000
Songbirds (Oscines) learn their songs from a tutor. It is not known where in the brain the memories of these learned sounds are stored. Recent evidence suggests that song perception in songbirds involves neuronal activation in brain regions that have not traditionally been implicated in the control of song production or song learning, notably the caudal part of the neostriatum (NCM) and of the hyperstriatum ventrale. Zebra finch males (Taeniopygia guttata castanotis) were reared without their father and exposed to a tape-recorded song during the sensitive period for song learning. When, as adults, they were reexposed to the tutor song, the males showed increased expression of the protein products of the immediate early genes egr-1 (ZENK) and c-fos in the NCM and caudal hyperstriatum ventrale, but not in the conventional ''song-control nuclei.'' The strength of the immediate early gene response (which is a reflection of neuronal activation) in the NCM correlated significantly and positively with the number of song elements that the birds had copied from the tutor song. These results show localized neural activation in response to tutor song exposure that correlates with the strength of song learning.
Brain, Behavior and Evolution, 2019
Acoustic communication signals are typically generated to influence the behavior of conspecific receivers. In songbirds, for instance, such cues are routinely used by males to influence the behavior of females and rival males. There is remarkable diversity in vocalizations across songbird species, and the mechanisms of vocal production have been studied extensively, yet there has been comparatively little emphasis on how the receiver perceives those signals and uses that information to direct subsequent actions. Here, we emphasize the receiver as an active participant in the communication process. The roles of sender and receiver can alternate between individuals, resulting in an emergent feedback loop that governs the behavior of both. We describe three lines of research that are beginning to reveal the neural mechanisms that underlie the reciprocal exchange of information in communication. These lines of research focus on the perception of the repertoire of songbird vocalizations,...
Proceedings of the National Academy of Sciences, 2006
In both humans and songbirds, infants learn vocalizations by imitating the sounds of adult tutors with whom they interact during an early sensitive period. Vocal learning occurs in few animal taxa; similarities in the imitation process between humans and songbirds make the songbird a unique system in which vocal learning mechanisms can be studied at the neurobiological level. One theory of vocal learning proposes that early auditory experience generates auditory memories that subsequently guide vocal imitation. We now present a combination of behavioral and neurophysiological results, obtained in a songbird, that support this theory. We show that neurons in a forebrain auditory area of adult male zebra finches are selectively tuned to the song of a tutor heard early in development. Furthermore, the strength of this selectivity shows a striking correlation with the fidelity of vocal imitation, suggesting that this auditory memory may have served as the model for song learning.