Detectability of cerebellar activity with magnetoencephalography and electroencephalography (original) (raw)

Can electro- and magnetoencephalography detect signals from the human cerebellum?

2019

The cerebellum plays a key role in the regulation of motor learning, coordination and timing, and has been implicated in sensory and cognitive processes as well. However, our current knowledge of its electrophysiological mechanisms comes primarily from direct recordings in animals, as investigations into cerebellar function in humans have instead predominantly relied on lesion, haemodynamic and metabolic imaging studies. While the latter provide fundamental insights into the contribution of the cerebellum to various cerebellar-cortical pathways mediating behaviour, they remain limited in terms of temporal and spectral resolution. In principle, this shortcoming could be overcome by monitoring the cerebellum’s electrophysiological signals. Non-invasive assessment of cerebellar electrophysiology in humans, however, is hampered by the limited spatial resolution of electroencephalography (EEG) and magnetoencephalography (MEG) in subcortical structures, i.e., deep sources. Furthermore, it...

Assessing cerebellar-cortical connectivity using concurrent TMS-EEG: A Feasibility Study

2020

BackgroundCombined single-pulse transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been used to probe the features of local networks in the cerebral cortex. Here we investigate whether we can use this approach to explore long-range connections between the cerebellum and cerebral cortex.ObjectiveTo assess the feasibility of using cerebellar TMS-EEG for the exploration of cerebellar-cerebral network dynamics.MethodsTen healthy adults received single-pulse suprathreshold TMS to the cerebellum and an occipital/parietal control site with double-cone and figure-of-eight coils while cerebral activity was recorded. A multisensory electrical control condition was used to simulate the sensation of the double-cone coil at the cerebellar site. Two cleaning pipelines were compared, and the spatiotemporal relationships of the EEG output between conditions were examined at sensor and source levels.ResultsCerebellar stimulation with the double-cone coil resulted in large a...

Cerebellar Functional Anatomy: a Didactic Summary Based on Human fMRI Evidence

The Cerebellum, 2019

The cerebellum is relevant for virtually all aspects of behavior in health and disease. Cerebellar findings are common across all kinds of neuroimaging studies of brain function and dysfunction. A large and expanding body of literature mapping motor and non-motor functions in the healthy human cerebellar cortex using fMRI has served as a tool for interpreting these findings. For example, results of cerebellar atrophy in Alzheimer's disease in caudal aspects of Crus I/II and medial lobule IX can be interpreted by consulting a large number of task, resting-state, and gradient-based reports that describe the functional characteristics of these specific aspects of the cerebellar cortex. Here, we provide a concise summary that outlines organizational principles observed consistently across these studies of normal cerebellar organization. This basic framework may be useful for investigators performing or reading experiments that require a functional interpretation of human cerebellar topography.

Exploring the connectivity between the cerebellum and motor cortex in humans

The Journal of Physiology, 2004

Animal studies have shown that cerebellar projections influence both excitatory and inhibitory neurones in the motor cortex but this connectivity has yet to be demonstrated in human subjects. In human subjects, magnetic or electrical stimulation of the cerebellum 5-7 ms before transcranial magnetic stimulation (TMS) of the motor cortex decreases the TMSinduced motor-evoked potential (MEP), indicating a cerebellar inhibition of the motor cortex (CBI). TMS also reveals inhibitory and excitatory circuits of the motor cortex, including a short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF). This study used magnetic cerebellar stimulation to investigate connections between the cerebellum and these cortical circuits. Three experiments were performed on 11 subjects. The first experiment showed that with increasing test stimulus intensities, LICI, CBI and ICF decreased, while SICI increased. The second experiment showed that the presence of CBI reduced SICI and increased ICF. The third experiment showed that the interaction between CBI and LICI reduced CBI. Collectively, these findings suggest that cerebellar stimulation results in changes to both inhibitory and excitatory neurones in the human motor cortex.

Neuromagnetic cerebellar activation during seizures arising from the motor cortex

Epilepsy Research, 2011

We utilized the high temporal resolution, whole head coverage and novel analysis methodology of magnetoencephalography (MEG) to record the dynamics of cerebellar activation during focal motor seizures. We analyzed ictal MEG data from a four-year old using an eventrelated beamformer to localize and display ictal changes over the motor cortex and cerebellum. Contralateral activation of the cerebellum was seen 14 s after MEG ictal onset over the motor cortex. These findings represent the first indication of ictal activity within the cerebellum in humans, measured non-invasively with MEG.

The cerebellar network: From structure to function and dynamics, in "Brain Research Reviews, vol. 66: 5-15, 2011

Since the discoveries of Camillo Golgi and Ramón y Cajal, the precise cellular organization of the cerebellum has inspired major computational theories, which have then influenced the scientific thought not only on the cerebellar function but also on the brain as a whole. However, six major issues revealing a discrepancy between morphologically inspired hypothesis and function have emerged. (1) The cerebellar granular layer does not simply operate a simple combinatorial decorrelation of the inputs but performs more complex non-linear spatio-temporal transformations and is endowed with synaptic plasticity. (2) Transmission along the ascending axon and parallel fibers does not lead to beam formation but rather to vertical columns of activation. (3) The olivo-cerebellar loop could perform complex timing operations rather than error detection and teaching. (4) Purkinje cell firing dynamics are much more complex than for a linear integrator and include pacemaking, burst–pause discharges, and bistable states in response to mossy and climbing fiber synaptic inputs. (5) Long-term synaptic plasticity is far more complex than traditional parallel fiber LTD and involves also other cerebellar synapses. (6) Oscillation and resonance could set up coherent cycles of activity designing a functional geometry that goes far beyond pre-wired anatomical circuits. These observations clearly show that structure is not sufficient to explain function and that a precise knowledge on dynamics is critical to understand how the cerebellar circuit operates.

Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition

Frontiers in neural circuits, 2012

Following the fundamental recognition of its involvement in sensory-motor coordination and learning, the cerebellum is now also believed to take part in the processing of cognition and emotion. This hypothesis is recurrent in numerous papers reporting anatomical and functional observations, and it requires an explanation. We argue that a similar circuit structure in all cerebellar areas may carry out various operations using a common computational scheme. On the basis of a broad review of anatomical data, it is conceivable that the different roles of the cerebellum lie in the specific connectivity of the cerebellar modules, with motor, cognitive, and emotional functions (at least partially) segregated into different cerebro-cerebellar loops. We here develop a conceptual and operational framework based on multiple interconnected levels (a meta-levels hypothesis): from cellular/molecular to network mechanisms leading to generation of computational primitives, thence to high-level cogn...

Analysis of the pattern of functional activation of the cerebellum and its topographical correlation

Radiología (English Edition), 2020

Objectives: To describe the normal patterns of cerebellar activation in specific cerebral functions (motor, language, memory) and their topographical correlations in the cerebellar cortex on functional magnetic resonance imaging. Materials and methods: We evaluated 25 healthy subjects (8 women and 17 men; 23 righthanded and 2 left-handed; age range, 16-64 years), who did language, memory, and motor tasks while undergoing 1.5 T functional magnetic resonance imaging. Results: We assessed functional activity of the cerebellum associated with motor, language, and memory components, describing their relations with topographical regions of the cerebellum and their functional relations with areas in the cerebral cortex. Conclusions: Knowledge of the normal patterns of morphological characteristics and functional behaviour in the cerebellum as well as their relations with the brain is important for radiologists and clinicians evaluating the cerebellum and possible pathological conditions that affect it.

Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements

The Cerebellum, 2018

This magnetoencephalography (MEG) study aims at characterizing the coupling between cerebellar activity and the kinematics of repetitive self-paced finger movements. Neuromagnetic signals were recorded in 11 right-handed healthy adults while they performed repetitive flexion-extensions of right-hand fingers at three different movement rates: slow (~1 Hz), medium (~2 Hz), and fast (~3 Hz). Right index finger acceleration was monitored with an accelerometer. Coherence analysis was used to index the coupling between right index finger acceleration and neuromagnetic signals. Dynamic imaging of coherent sources was used to locate coherent sources. Coupling directionality between primary sensorimotor (SM1), cerebellar, and accelerometer signals was assessed with renormalized partial directed coherence. Permutation-based statistics coupled with maximum statistic over the entire brain volume or restricted to the cerebellum were used. At all movement rates, maximum coherence peaked at SM1 cortex contralateral to finger movements at movement frequency (F0) and its first harmonic (F1). Significant (statistics restricted to the cerebellum) coherence consistently peaked at the right posterior lobe of the cerebellum at F0 with no influence of movement rate. Coupling between Acc and cerebellar signals was significantly stronger in the afferent than in the efferent direction with no effective contribution of cortico-cerebellar or cerebello-cortical pathways. This study demonstrates the existence of significant coupling between finger movement kinematics and neuromagnetic activity at the posterior cerebellar lobe ipsilateral to finger movement at F0. This coupling is mainly driven by spinocerebellar, presumably proprioceptive, afferences.

A patchy horizontal organization of the somatosensory activation of the rat cerebellum demonstrated by functional MRI

European Journal of Neuroscience, 1999

Blood oxygenation level dependent contrast (BOLD) functional MRI (fMRI) responses, in a 7-T magnet, were observed in the cerebellum of alpha-chloralose anaesthetized rats in response to innocuous electrical stimulation of a forepaw or hindpaw. The responses were imaged in both coronal and sagittal slices which allowed for a clear delineation and localization of the observed activations. We demonstrate the validity of our fMRI protocol by imaging the responses in somatosensory cortex to the same stimuli and by showing reproducibility of the cerebellar responses. Widespread bilateral activations were found with mainly a patchy and mediolateral band organization, more pronounced ipsilaterally. Possible parasagittal bands were observed only in contralateral lobule VI. There was no overlap between the cerebellar activations caused by forepaw and hindpaw stimuli. The overall horizontal organization of these responses was quite remarkable. For both stimulation paradigms most of the activation patches were positioned in either a rostral or caudal broad plane running anteroposteriorly through both anterior and posterior cerebellum. The rostral planes were completely separated, with the forepaw activation closer to the surface, while the caudal plane was common to both stimulation protocols. We relate our ®ndings to the known projection patterns of spinocerebellar and cuneocerebellar mossy ®bres, and to human fMRI studies.