On the strong chromatic index and induced matching of tree-cographs, permutation graphs and chordal bipartite graphs (original) (raw)
Abstract
We show that there exist linear-time algorithms that compute the strong chromatic index and a maximum induced matching of treecographs when the decomposition tree is a part of the input. We also show that there exist efficient algorithms for the strong chromatic index of (bipartite) permutation graphs and of chordal bipartite graphs.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (25)
- Abueida, A., A. Busch and R. Sritharan, A min-max property of chordal bipartite graphs with applications, Graphs and Combinatorics 26 (2010), pp. 301-313.
- Golumbic, M., Algorithmic graph theory and perfect graphs, Elsevier, Annals of Dis- crete Mathematics 57, 2004.
- Golumbic, M. and C. Goss, Perfect elimination and chordal bipartite graphs, Journal of Graph Theory 2 (1978), pp. 155-163.
- Grötschel, M., L. Lóvasz and A. Schrijver, Polynomial algorithms for perfect graphs. In Annals of Discrete Mathematics, Elsevier (1984), pp. 325-356.
- P. Hammer, U. Peled, X. Sun, Difference graphs, Discrete Applied Mathematics 28 (1990) 35-44.
- Harary, F., A characterization of block-graphs, Canadian Mathematical Bulletin 6 (1963), pp. 1-6.
- Hayward, R., Weakly triangulated graphs, Journal of Combinatorial Theory, Series B 39 (1985), pp. 200-208.
- Hayward, R., J. Spinrad and R. Sritharan, Improved algorithms for weakly chordal graph, ACM Transactions on Algorithms 3 (2007), Article No. 14.
- Hocquard, H., P. Ochem, and P. Valicov, Strong edge coloring and induced matchings. Manuscript, 2011.
- Howorka, E., A characterization of ptolemaic graphs, Journal of Graph Theory 5 (1981), pp. 323-331.
- Huang, J., Representation characterizations of chordal bipartite graphs, Journal of Combinatorial Theory, Series B 96 (2006), pp. 673-683.
- Kloks, T., Treewidth -Computations and approximations, Springer, Lecture Notes in Computer Science 842, 1994.
- Kloks, T., C. Liu and S. Poon, Feedback vertex set on chordal bipartite graphs. ArXiv: 1104.3915, 2011.
- Lehel, J., A characterization of totally balanced hypergraphs, Discrete Mathematics 57 (1985), pp. 59-65.
- Lekkerkerker, C. and D. Boland, Representation of finite graphs by a set of intervals on the real line, Fundamenta Mathematicae 51 (1962), pp. 45-64.
- Lovász, L., Perfect graphs. In, L. Beineke and R. Wilson eds., Selected topics in Graph Theory, Vol. 2, Academic Press, 1983, pp. 55-87.
- Lubiw, A., Γ -free matrices. Master's Thesis, Department of Combinatorics and Opti- mization, University of Waterloo, Canada, 1982.
- Mahdian, M., On the computational complexity of strong edge coloring, Discrete Ap- plied Mathematics 118 (2002), pp. 239-248.
- Paige, R. and R. Tarjan, Three partition refinement algorithms, SIAM Journal on Com- puting 16 (1987), pp. 973-989.
- Rose, D., G. Luecker and R. Tarjan, Algorithmic aspects of vertex elimination on graphs, SIAM Journal on Computing 5 (1976), pp. 266-283.
- Salavatipour, M., A polynomial time algorithm for strong edge coloring of partial k-trees, Discrete Applied Mathematics 143 (2004), pp. 285-291.
- Spinrad, J. and V. Vazirani, NP-completeness of some generalizations of the maxi- mum matching problem, Information Processing Letters 15 (1982), pp. 14-19.
- Stockmeyer, L., A. Brandsẗadt and L. Stewart, Bipartite permutation graphs, Discrete Applied Mathematics 18 (1987), pp. 279-292.
- Tinhofer, G., Strong tree-cographs are Birkhoff graphs, Discrete Applied Mathematics 22 (1989), pp. 275-288.
- Yannakakis, M., Computing the minimum fill-in is NP-complete, SIAM Journal on Algebraic and Discrete Methods 2 (1981), pp. 77-79.