Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers (original) (raw)
Abstract
Recent studies found that membrane-bound K-Ras dimers are important for biological function. However, the structure and thermodynamic stability of these complexes remained unknown because they are hard to probe by conventional approaches. Combining data from a wide range of computational and experimental approaches, here we describe the structure, dynamics, energetics and mechanism of assembly of multiple K-Ras dimers. Utilizing a range of techniques for the detection of reactive surfaces, protein-protein docking and molecular simulations, we found that two largely polar and partially overlapping surfaces underlie the formation of multiple K-Ras dimers. For validation we used mutagenesis, electron microscopy and biochemical assays under non-denaturing conditions. We show that partial disruption of a predicted interface through charge reversal mutation of apposed residues reduces oligomerization while introduction of cysteines at these positions enhanced dimerization likely through the formation of an intermolecular disulfide bond. Free energy calculations indicated that K-Ras dimerization involves direct but weak protein-protein interactions in solution, consistent with the notion that dimerization is facilitated by membrane binding. Taken together, our atomically detailed analyses provide unique mechanistic insights into K-Ras dimer formation and membrane organization as well as the conformational fluctuations and equilibrium thermodynamics underlying these processes. Ras proteins are intracellular guanine tri-phosphate (GTP) hydrolyzing enzymes (GTPases) that mediate signal transduction from the extracellular environment to the nucleus 1,2. Signaling through Ras is achieved via a switch-like off/on conformational change driven by guanine di-phosphate (GDP) and GTP exchange. Malfunction in the switching function of the three human Ras isoforms N-, Hand K-Ras (4 A&B) due to somatic mutations is linked to 15-25% of all human cancers. Up to 85% of these are due to mutations in K-Ras4B (here after K-Ras), and include some of the most lethal cancers such as pancreatic and colorectal cancers 3. K-Ras interacts with effectors and exchange factors via a conserved catalytic domain comprising the first 166 of 185 residues, and with the plasma membrane (pm) via a farnesylated C-terminus carrying six lysines. The isolated catalytic domain as well as full-length K-Ras can bind effectors and hydrolyze GTP in their monomeric form 4,5. Previous studies thus largely focused on the monomer even though Ras dimerization has been proposed as far back as 1988 6 and 2000 7. This changed recently with the finding that dimers of endogenous K-Ras activate the MAPK pathway 8. There is evidence that Ras dimers also form in synthetic membranes. Gerwert and colleagues used fluorescence energy transfer (FRET) and Fourier transform infrared (FTIR) spectroscopies plus molecular dynamics (MD) simulation to propose that N-Ras forms dimer in a POPC bilayer 9. Similarly, using fluorescence correlation spectroscopy (FCS) and other techniques Groves and colleagues proposed dimerization of H-Ras in a supported bilayer 10 due to oxidative covalent interactions 11. The evidence for Ras dimerization in solution is mixed. For
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (44)
- Barbacid, M. Ras Genes. Annu. Rev. Biochem. 56, 779, doi: 10.1146/annurev.bi.56.070187.004023 (1987).
- Cox, A. D. & Der, C. J. Ras history: The saga continues. Small GTPases 1, 2, doi: 10.4161/sgtp.1.1.12178 (2010).
- Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457, doi: 10.1158/0008- 5472.CAN-11-2612 (2012).
- Gillette, W. K. et al. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Sci. Rep. 5, 15916, doi: 10.1038/srep15916 (2015).
- Vetter, I. R. & Wittinghofer, A. The Guanine Nucleotide-Binding Switch in Three Dimensions. Science 294, 1299, doi: 10.1126/ science.1062023 (2001).
- Santos, E., Nebreda, A. R., Bryan, T. & Kempner, E. S. Oligomeric structure of p21 ras proteins as determined by radiation inactivation. J. Biol. Chem. 263, 9853 (1988).
- Inouye, K., Mizutani, S., Koide, H. & Kaziro, Y. Formation of the Ras dimer is essential for Raf-1 activation. J. Biol. Chem. 275, 3737, doi: 10.1074/jbc.275.6.3737 (2000).
- Nan, X. et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK). pathway. Proc. Natl. Acad. Sci. USA 112, 7996, doi: 10.1073/pnas.1509123112 (2015).
- Guldenhaupt, J. et al. N-Ras forms dimers at POPC membranes. Biophys. J. 103, 1585, doi: 10.1016/j.bpj.2012.08.043 (2012).
- Lin, W. C. et al. H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc. Natl. Acad. Sci. USA 111, 2996, doi: 10.1073/pnas.1321155111 (2014).
- Chung, J. K., Lee, Y. K., Lam, H. Y. & Groves, J. T. Covalent Ras dimerization on membrane surfaces through photosensitized oxidation. J. Am. Chem. Soc. 138, 1800, doi: 10.1021/jacs.5b12648 (2016).
- Werkmuller, A., Triola, G., Waldmann, H. & Winter, R. Rotational and translational dynamics of ras proteins upon binding to model membrane systems. Chem. Phys. Chem. 14, 3698, doi: 10.1002/cphc.201300617 (2013).
- Muratcioglu, S. et al. GTP-Dependent K-Ras Dimerization. Structure 23, 132, doi: 10.1016/j.str.2015.04.019 (2015).
- Kovrigina, E. A., Galiakhmetov, A. R. & Kovrigin, E. L. The Ras G domain lacks the intrinsic propensity to form dimers. Biophys. J. 109, 1000, doi: 10.1016/j.bpj.2015.07.020 (2015).
- Beck, R. et al. Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proc. Natl. Acad. Sci. USA 105, 11731, doi: 10.1073/pnas.0805182105 (2008).
- Wittmann, J. G. & Rudolph, M. G. Crystal structure of Rab9 complexed to GDP reveals a dimer with an active conformation of switch II. FEBS Lett. 568, 23, doi: 10.1016/j.febslet.2004.05.004 (2004).
- Hariri, H., Bhattacharya, N., Johnson, K., Noble, A. J. & Stagg, S. M. Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway. J. Mol. Biol. 426, 3811, doi: 10.1016/j.jmb.2014.08.023 (2014).
- Zhang, B. & Zheng, Y. Negative regulation of Rho family GTPases Cdc42 and Rac2 by homodimer formation. J. Biol. Chem. 273, 25728, doi: 10.1074/jbc.273.40.25728 (1998).
- Kang, P. J., Beven, L., Hariharan, S. & Park, H. O. The Rsr1/Bud1 GTPase interacts with itself and the Cdc42 GTPase during bud-site selection and polarity establishment in budding yeast. Mol. Biol. Cell. 21, 3007, doi: 10.1091/mbc.E10-03-0232 (2010).
- Swapna, L. S., Bhaskara, R. M., Sharma, J. & Srinivasan, N. Roles of residues in the interface of transient protein-protein complexes before complexation. Sci. Rep. 2, 334, doi: 10.1038/srep00334 (2012).
- Prakash, P., Sayyed-Ahmad, A. & Gorfe, A. A. pMD-Membrane: a method for ligand binding site Identification in membrane-bound proteins. PLoS Comput. Biol. 11, e1004469, doi: 10.1371/journal.pcbi.1004469 (2015).
- Prakash, P., Hancock, J. F. & Gorfe, A. A. Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 83, 898, doi: 10.1002/prot.24786 (2015).
- Abankwa, D. et al. A novel switch region regulates H-ras membrane orientation and signal output. EMBO J. 27, 727, doi: 10.1038/ emboj.2008.10 (2008).
- Gorfe, A. A., Hanzal-Bayer, M., Abankwa, D., Hancock, J. F. & McCammon, J. A. Structure and dynamics of the full-length lipid- modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J. Med. Chem. 50, 674, doi: 10.1021/jm061053f (2007).
- Prakash, P., Zhou, Y., Liang, H., Hancock, J. F. & Gorfe, A. A. Oncogenic K-Ras Binds to an Anionic Membrane in Two Distinct Orientations: A Molecular Dynamics Analysis. Biophys J 110, 1125-38 doi: 10.1016/j.bpj.2016.01.019 (2016).
- Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548, doi: 10.1038/nature12796 (2013).
- Pai, E. F. et al. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209, doi: 10.1038/341209a0 (1989).
- Andre, I., Strauss, C. E., Kaplan, D. B., Bradley, P. & Baker, D. Emergence of symmetry in homooligomeric biological assemblies. Proc. Natl. Acad. Sci. USA 105, 16148, doi: 10.1073/pnas.0807576105 (2008).
- Gray, J. J. et al. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331, 281, doi: 10.1016/S0022-2836(03)00670-3 (2003).
- Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105-53, doi: 10.1146/annurev.biophys.29.1.105 (2000).
- Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351 (1990).
- Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177, doi: 10.1006/ jmbi.1998.2439 (1999).
- Bahadur, R. P. & Zacharias, M. The interface of protein-protein complexes: analysis of contacts and prediction of interactions. Cell. Mol. Life. Sci. 65, 1059, doi: 10.1007/s00018-007-7451-x (2008).
- Ahnert, S. E., Marsh, J. A., Hernandez, H., Robinson, C. V. & Teichmann, S. A. Principles of assembly reveal a periodic table of protein complexes. Science 350, aaa2245, doi: 10.1126/science.aaa2245 (2015).
- Hopf, T. A., Colwell, L. J., Sheridan, R., Rost, B., Sander, C. & Marks, D. S. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607, doi: 10.1016/j.cell.2012.04.012 (2012).
- Wu, H. Higher-order assemblies in a new paradigm of signal transduction. Cell 153, 287, doi: 10.1016/j.cell.2013.03.013 (2013).
- de Juan, D., Pazos, F. & Valencia, A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 14, 249, doi: 10.1038/nrg3414 (2013).
- Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A. & Caves, L. S. Bio3D: an R package for the comparative analysis of protein structures. Bioinformatics 22, 2695, doi: 10.1093/bioinformatics/btl461 (2006).
- Skjaerven, L., Yao, X. Q., Scarabelli, G. & Grant, B. J. Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics 15, 399, doi: 10.1186/s12859-014-0399-6 (2014).
- Gumbart, J. C., Roux, B. & Chipot, C. Efficient determination of protein-protein standard binding free energies from first principles. J. Chem. Theory Comput. 9 3789, doi: 10.1021/ct400273t (2013).
- Moreira, I. S., Martins, J. M., Coimbra, J. T. S., Ramos, M. J. & Fernandes, P. A. A new scoring function for protein-protein docking that identifies native structures with unprecedented accuracy. Phys. Chem. Chem. Phys. 17, 2378, doi: 10.1039/C4CP04688A (2015).
- Sayyed-Ahmad, A., Cho, K. J., Hancock, J. F. & Gorfe, A. A. Computational equilibrium thermodynamic and kinetic analysis of K-Ras dimerization through an effector binding surface suggests limited functional role. J. Phys. Chem. B 120, 8547, doi: 10.1021/ acs.jpcb.6b02403 (2016).
- Cho, K. J. et al. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J. Biol. Chem. 287, 43573, doi: 10.1074/jbc.M112.424457 (2012).
- Hancock, J. F. & Prior, I. A. Electron microscopic imaging of Ras signaling domains. Methods 37, 165, doi: 10.1016/j. ymeth.2005.05.018 (2005).