Neurofilaments as biomarkers in neurological disorders (original) (raw)
Related papers
Increased Neurofilament Light Chain Blood Levels in Neurodegenerative Neurological Diseases
PLoS ONE, 2013
Objective: Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf) are cytoskeletal proteins of neurons and their release into cerebrospinal fluid has shown encouraging results as a biomarker for neurodegeneration. This study aimed to validate the quantification of the Nf light chain (NfL) in blood samples, as a biofluid source easily accessible for longitudinal studies.
Clinical chemistry and laboratory medicine, 2016
Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf) are specific cytoskeletal proteins of neurons and their quantification has shown encouraging results as a biomarker for axonal injury. We aimed at comparing a widely used conventional ELISA for Nf light chain (NfL) with an electrochemiluminescence-based method (ECL assay) and a newly developed single-molecule array (Simoa) method in clinically relevant cerebrospinal fluid (CSF) and serum samples. Analytical sensitivity was 0.62 pg/mL for Simoa, 15.6 pg/mL for the ECL assay, and 78.0 pg/mL for the ELISA. Correlations between paired CSF and serum samples were strongest for Simoa (r=0.88, p<0.001) and the ECL assay (r=0.78, p<0.001) and weaker for ELISA measurements (r=0.38, p=0.030). CSF NfL measurements between the platforms were highly correlated (r=1.0, p<0.001). Serum NfL levels were highly related between ECL assay and Simoa (r=0.86, p<0.001), and this was less vi...
Blood neurofilament light: a critical review of its application to neurologic disease
Annals of Clinical and Translational Neurology, 2020
Neuronal injury is a universal event that occurs in disease processes that affect both the central and peripheral nervous systems. A blood biomarker linked to neuronal injury would provide a critical measure to understand and treat neurologic diseases. Neurofilament light chain (NfL), a cytoskeletal protein expressed only in neurons, has emerged as such a biomarker. With the ability to quantify neuronal damage in blood, NfL is being applied to a wide range of neurologic conditions to investigate and monitor disease including assessment of treatment efficacy. Blood NfL is not specific for one disease and its release can also be induced by physiological processes. Longitudinal studies in multiple sclerosis, traumatic brain injury, and stroke show accumulation of NfL over days followed by elevated levels over months. Therefore, it may be hard to determine with a single measurement when the peak of NfL is reached and when the levels are normalized. Nonetheless, measurement of blood NfL provides a new blood biomarker for neurologic diseases overcoming the invasiveness of CSF sampling that restricted NfL clinical application. In this review, we examine the use of blood NfL as a biologic test for neurologic disease.
Elevated neurofilament levels in neurological diseases
Brain Research, 2003
Neurofilaments, a major cytoskeletal constituent of neuronal cells, can be released into the cerebrospinal fluid during several neurodegenerative diseases. By means of a new sensitive ELISA capable of measuring 60 ng / l of neurofilament light, significant elevations were observed for different neurological disorders.
Frontiers in Neuroscience, 2020
Neurofilament-light chain (NF-L) is a well-known clinical biomarker of many neurodegenerative diseases. By analyzing amyotrophic lateral sclerosis (ALS) patients cerebrospinal fluid (CSF) or plasma, progression of NF-L levels can forecast conversion from the presymptomatic to symptomatic stage and time of survival. The use of plasma for NF-L measurement makes this biomarker exceptionally valuable for clinical studies since sample collection can be performed repeatedly without causing much harm. Detailed analyses of NF-L expression in neurodegenerative disease patient's samples were already performed, while NF-L levels of preclinical models of ALS, Alzheimer's and Parkinson's disease as well as lysosomal storage diseases are still widely unknown. We therefore evaluated NF-L levels in the plasma of the ALS models SOD1-G93A low expressor and TAR6/6 mice, the Alzheimer's disease (AD) model 5xFAD, the Parkinson's disease model Line 61 and the Gaucher disease (GD) model 4L/PS-NA and the CSF of selected models. Our results show that NF-L levels are highly increased in the plasma of ALS, Alzheimer's and GD models, while in the analyzed Parkinson's disease model NF-L plasma levels barely changed. Most analyzed models show a progressive increase of NF-L levels. NF-L measurements in the plasma of the neurodegenerative disease mouse models of ALS and AD are thus a good tool to evaluate disease progression. Compared to analyses in human tissues, our results suggest a high translation value of murine NF-L levels and their progression. Furthermore, our data indicate that NF-L might also be a good biomarker for disorders with a neuronal component like some lysosomal storage diseases.
Neurofilaments in disease: what do we know
Neurofilaments are proteins selectively expressed in the cytoskeleton of neurons, and increased levels are a marker of damage. Elevated neurofilament levels can serve as a marker of ongoing disease activity as well as a tool to measure response to therapeutic intervention. The potential utility of neurofilaments has drastically increased as recent advances have made it possible to measure levels in both the cerebrospinal fluid and blood. There is mounting evidence that neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (NfH) are abnormal in a host of neurodegenerative diseases. In this review we examine how both of these proteins behave across diseases and what we know about how these biomarkers relate to in vivo white matter pathology and each other.
Neuron, 2016
A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progress...
Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers
Molecular Neurodegeneration
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today’s MND research agenda. In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also i...
Journal of Neurochemistry, 2002
In the present study we describe an ELISA to quantify the light subunit of the neurofilament triplet protein (NFL) in CSF. The method was validated by measuring CSF NFL concentrations in healthy individuals and in two well-characterized groups of patients with amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). The levels were increased in ALS (1,743~1,661 ng/L; mean ± SD) and AD (346 ± 176 ng/L) compared with controls (138 ± 31 ng/L; p < 0.0001 for both). Within the ALS group, patients with lower motor neuron signs only had lower NFL levels (360 ± 237 ng/L) than those with signs of upper motor neuron disease (2,435 ± 1,633 ng/L) (p <0.05). In a second study patients with miscellaneous neurodegenerative diseases were investigated (vascular dementia, olivopontocerebellar atrophy, normal pressure hydrocephalus, cerebral infarctions, and multiple sclerosis), and the CSF NFL level was found to be increased (665 ± 385 ng/L; p < 0.0001). NFL is a main structural protein of axons, and we suggest that CSF NFL can be used to monitor neurodegeneration in general, but particularly in ALS with involvement of the pyramidal tract.
Neurofilament light in CSF and serum is a sensitive marker for axonal white matter injury in MS
Neurology - Neuroimmunology Neuroinflammation, 2016
Objective: In an ongoing, open-label, phase 1b study on the intrathecal administration of rituximab for progressive multiple sclerosis, an intraventricular catheter was inserted for drug delivery. The objective of this study was to characterize the limited white matter axonal injury evoked by catheter insertion by analyzing a panel of markers for tissue damage in CSF and serum. Methods: Lumbar CSF and serum were collected before catheter insertion and at regular intervals during the follow-up period of 1 year. Levels of neurofilament light polypeptide (NF-L), glial fibrillary acidic protein, microtubule-associated protein tau, and S100 calcium binding protein B were measured in the CSF, and NF-L was also quantified in serum at each time point. Results: One month after neurosurgical trauma, there was a distinct peak in NF-L concentration in both CSF and serum. In contrast, the biomarkers S100 calcium binding protein B, glial fibrillary acidic protein, and microtubule-associated protein tau did not show any significant changes. NF-L levels in both CSF and serum peaked at 1 month post surgery, returning to baseline after 6 to 9 months. A strong correlation was observed between the concentrations of NF-L in CSF and serum. Conclusions: The NF-L level, in CSF and serum, appears to be both a sensitive and specific marker for white matter axonal injury. This makes NF-L a valuable tool with which to evaluate acute white matter axonal damage in a clinical setting. Serum analysis of NF-L may become a convenient way to follow white matter axonal damage longitudinally.