Malaria infection and human evolution (original) (raw)
Related papers
Malaria infection and the anthropological evolution
Saúde e Sociedade, 2010
During the evolution of the genus Homo, with regard to species habilis, erectus and sapiens, malaria infection played a key biological role, influencing the anthropological development too. Plasmodia causing malaria developed two kinds of evolution, according to a biological and philogenetical point of view. In particular, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, would have either coevolved with human mankind (coevolution), or reached human species during the most ancient phases of genus Homo evolution. On the other hand, Plasmodium falciparum has been transmitted to humans by monkeys in a more recent period, probably between the end of Mesolithic and the beginning of Neolithic age. The authors show both direct and indirect biomolecular evidences of malaria infection, detected in buried subjects, dating to the Ancient World, and brought to light in the course of archeological excavations in some relevant Mediterranean sites. In this literature review the Authors ...
An overview of natural history of the human malaria
2020
Malaria has troubled humans for thousands of years. Disease resembling malaria has been described for more than 5000 years. Malaria is currently endemic in more than 100 tropical and subtropical countries. The etymology of malaria is derived from mal aria means bad air in medieval Italian. This is because ancient Romans thought that malaria came from fumes in the swamps. Over 25 distinct species of Plasmodium are identified for transmission of malaria in primates but only four species of Plasmodium are responsible for human malaria viz. Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Sometimes humans may infect with Plasmodium knowlesi (also called traveler’s malaria or monkey malaria) that normally infect animals. Plasmodium knowlesi is prevalent in Southeast Asia, especially Malaysia. Out of which malaria due to Plasmodium falciparum (also called cerebral malaria) is prevalent in tropical and subtropical countries and is most fatal. By study natu...
Early Origin and Recent Expansion of Plasmodium falciparum
Science, 2003
The emergence of virulent Plasmodium falciparum in Africa within the past 6000 years as a result of a cascade of changes in human behavior and mosquito transmission has recently been hypothesized. Here, we provide genetic evidence for a sudden increase in the African malaria parasite population about 10,000 years ago, followed by migration to other regions on the basis of variation in 100 worldwide mitochondrial DNA sequences. However, both the world and some regional populations appear to be older (50,000 to 100,000 years old), suggesting an earlier wave of migration out of Africa, perhaps during the Pleistocene migration of human beings.
A Fresh Look at the Origin of Plasmodium falciparum, the Most Malignant Malaria Agent
PLoS Pathogens, 2011
From which host did the most malignant human malaria come: birds, primates, or rodents? When did the transfer occur? Over the last half century, these have been some of the questions up for debate about the origin of Plasmodium falciparum, the most common and deadliest human malaria parasite, which is responsible for at least one million deaths every year. Recent findings bring elements in favor of a transfer from great apes, but are these evidences really solid? What are the grey areas that remain to be clarified? Here, we examine in depth these new elements and discuss how they modify our perception of the origin and evolution of P. falciparum. We also discuss the perspectives these new discoveries open.
The origin of malignant malaria
Proceedings of The National Academy of Sciences, 2009
Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5-7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Cô te d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2-3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.
From the Cover: The origin of malignant malaria
Proceedings of The National Academy of Sciences, 2009
Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5-7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Cô te d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2-3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.
Ancient Plasmodium genomes shed light on the history of human malaria
Nature, 2024
Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia bce, respectively; for P. vivax, this evidence pre-dates textual references by several millennia. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the transAtlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.