Accurate and Resource-Aware Classification Based on Measurement Data (original) (raw)

Abstract

In this paper, we face the problem of designing accurate decision-making modules in measurement systems that need to be implemented on resource-constrained platforms. We propose a methodology based on multiobjective optimization and genetic algorithms (GAs) for the analysis of support vector machine (SVM) solutions in the classification error-complexity space. Specific criteria for the choice of optimal SVM classifiers and experimental results on both real and synthetic data will also be discussed.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (34)

  1. A. Boni, F. Pianegiani, and D. Petri, "Low-power and low-cost implemen- tation of SVMs for smart sensors," IEEE Trans. Instrum. Meas., vol. 56, no. 1, pp. 9-44, Feb. 2007.
  2. A. Bermak and S. B. Belhouari, "Bayesian learning using Gaussian process for gas identification," IEEE Trans. Instrum. Meas., vol. 55, no. 3, pp. 787-792, Jun. 2006.
  3. F. Lopez Peña, F. Bellas, R. J. Duro, and M. L. Sanchez Simon, "Using adaptive artificial neural networks for reconstructing irregularly sampled laser Doppler velocimetry signals," IEEE Trans. Instrum. Meas., vol. 55, no. 3, pp. 916-922, Jun. 2006.
  4. A. Laha, N. R. Pal, and J. Das, "Land cover classification using fuzzy rules and aggregation of contextual information through evidence the- ory," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 5, pp. 1633-1641, Jun. 2006.
  5. A. Cerpa, J. Elson, M. Hamilton, and J. Zhao, "Habitat monitoring: Application driver for wireless communication technology," in Proc. ACM SIGCOMM, San Jose, Costa Rica, Apr. 2001.
  6. M. Ogawa et al., "Fully automatic biosignal acquisition in daily routine through 1 month," in Proc. Int. Conf. IEEE-EMBS, Hong Kong, 1998, pp. 1947-1950.
  7. T. Poggio and S. Smale, "The mathematics of learning: Dealing with data," North Amer. Math. Soc., vol. 50, no. 5, pp. 537-544, 2003.
  8. V. Vapnik, Statistical Learning Theory. Hoboken, NJ: Wiley, 1998.
  9. B. Scholkopf and A. Smola, Learning With Kernels. Cambridge, MA: MIT Press, 2002.
  10. M. Pardo and G. Sberveglieri, "Learning from data: A tutorial with em- phasis on modern pattern recognition methods," IEEE Sensors J., vol. 2, no. 32, pp. 203-217, Jun. 2002.
  11. X. Nguyen, M. I. Jordan, and B. Sinopoli, "A kernel-based learning ap- proach to ad hoc sensor network localization," ACM Trans. Sensor Netw., vol. 1, no. 1, pp. 134-152, Aug. 2005.
  12. A. Buluta, A. Singha, P. Shinb, T. Fountainb, H. Jassob, L. Yanc, and A. Elgamalc, "Real-time nondestructive structural health monitor- ing using support vector machines and wavelets," Univ. Calif., Santa Barbara, Santa Barbara, CA, Tech. Rep. 2004-26, 2004.
  13. V. Pareto, Cours D'Economie Politique, 1896, Lausanne, Switzerland.
  14. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York: Wiley, 2001.
  15. C. Igel, "Multiobjective model selection for support vector machines," in Proc. 3rd Int. Conf. EMO, 2005, pp. 534-546.
  16. T. P. Runarsson and S. Sigurdsson, "Asynchronous parallel evolutionary model selection for support vector machines," Neural Inf. Process.-Lett. Rev., vol. 3, no. 3, pp. 59-67, Jun. 2004.
  17. P.-W. Chen, J.-Y. Wang, and H.-M. Lee, "Model selection of SVMs using GA approach," in Proc. IJCNN, Budapest, Hungary, Jul. 26-29, 2004, pp. 2035-2040.
  18. A. Marconato, A. Boni, B. Caprile, and D. Petri, "Model selection for power efficient analysis of measurement data," in Proc. Instrum. Meas. Technol. Conf., Sorrento, Italy, 2006, pp. 1524-1529.
  19. D. Anguita, A. Boni, S. Ridella, F. Rivieccio, and F. Sterpi, "Theoretical and practical model selection methods for support vector classifiers," in Support Vector Machines: Theory and Applications, L. Wang, Ed. New York: Springer-Verlag, 2005.
  20. P. L. Bartlett, S. Boucheron, and G. Lugosi, "Model selection and error estimation," Mach. Learn., vol. 48, no. 1-3, pp. 85-113, Jul. 2002.
  21. A. Kalai, "Probabilistic and on-line methods in machine learning," Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-01-132, 2001.
  22. B. Efron and R. Tibshirani, An Introduction to the Bootstrap. London, U.K.: Chapman & Hall, 1993.
  23. R. Bouckaert, "Choosing between two learning algorithms based on calibrated tests," in Proc. Int. Conf. Mach. Learn., 2003, pp. 51-58.
  24. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA: Kluwer, 1989.
  25. C. A. C. Coello, "An updated survey of evolutionary multiobjective opti- mization techniques: State of the art and future trends," in Proc. Congr. Evol. Comput., Washington, DC, Jul. 6-9, 1999, pp. 3-13.
  26. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, "A fast elitist non- dominated sorting genetic algorithm for multi-objective optimization: NSGA-II," Indian Inst. Technol., Kanpur, India, KanGAL Rep. 200 001, 2000.
  27. E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: A com- parative case study and the strength Pareto approach," IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257-271, Nov. 1999.
  28. C. Blake and C. Merz, UCI Repository of Machine Learning Databases. [Online]. Available: http://www.ics.uci.edu/\~mlearn/MLRepository.html
  29. M. Duarte and Y. H. Hu, "Vehicle classification in distributed sensor networks," J. Parallel Distrib. Comput., vol. 64, no. 7, pp. 826-838, Jul. 2004.
  30. D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3217-3226, Nov. 2000.
  31. A. Boni, F. Pianegiani, and D. Petri, "Energy-aware signal classification in wireless sensor networks," in Proc. Instrum. Meas. Technol. Conf., Ottawa, ON, Canada, 2005.
  32. LIBSVM, SVM tool. [Online]. Available: http://www.csie.ntu.edu.tw/ ~cjlin/libsvm/
  33. R. Kohavi, "A study of cross-validation and bootstrap for accuracy esti- mation and model selection," in Proc. 14th Int. Joint Conf. Artif. Intell., 1995, pp. 1137-1143.
  34. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York: Springer-Verlag, 2001.