Clinical-pathological and molecular characterization of long-term survivors with advanced non-small cell lung cancer (original) (raw)
2020, Cancer biology and medicine
Objective: Long-term survivors (LS) of non-small cell lung cancer (NSCLC) without driver alterations, displaying an overall survival (OS) of more than 3 years, comprise around 10% of cases in several series treated with chemotherapy. There are classical prognosis factors for these cases [stage, Eastern Cooperative Oncology Group (ECOG), etc.], but more data are required in the literature. In this multi-center study, we focused on LS of advanced NSCLC with OS above 36 months to perform a clinical-pathological and molecular characterization. Methods: In the first step, we conducted a clinical-pathological characterization of the patients. Afterwards, we carried out a genetic analysis by comparing LS to a sample of short-term survivors (SS) (with an OS less than 9 months). We initially used whole-genome RNA-seq to identify differentiating profiles of LS and SS, and later confirmed these with reverse transcription-polymerase chain reaction (RT-PCR) for the rest of the samples. Results: A total of 94 patients were included, who were mainly men, former smokers, having adenocarcinoma (AC)-type NSCLC with an ECOG of 0-1. We obtained an initial differential transcriptome expression, displaying 5 over-and 33 under-expressed genes involved in different pathways: namely, the secretin receptor, surfactant protein, trefoil factor 1 (TFF1), serpin, Ca-channels, and Tolllike receptor (TLRs) families. Finally, RT-PCR analysis of 40 (20 LS/20 SS) samples confirmed that four genes (surfactant proteins and SFTP) were significantly down-regulated in SS compared to LS by using an analysis of covariance (ANCOVA) model: SFTPA1 (P = 0.023), SFTPA2 (P = 0.027), SFTPB (P = 0.02), and SFTPC (P = 0.047). Conclusions: We present a sequential genetic analysis of a sample of NSCLC LS with no driver alterations, obtaining a differential RNA-seq/RT-PCR profile showing an abnormal expression of SF genes.