Görüntüleme dizileri için süperiletken mikroşerit yama anten tasarımı ve testi (original) (raw)

Antenna is a device that has a metallic structure that emits or detects electromagnetic waves in a certain pattern. The antennas are in different geometrical structures and are used in many different applications today. Imaging systems are also one of the applications where antennas are mainly used. Due to the increasing demand and the technology that develops accordingly, it is expected that these systems occupy less area today. For this reason most imaging systems are integrated on an electronic chip or on low-area printed circuit boards. The antennas in the system are required to have low power losses at high frequencies, to work in wide and multiple frequency bands, and to be easily produced. The use of superconducting microstrip patch antennas in imaging arrays allows the design of electrically small antennas with less power loss in radio frequencies. This is a situation where many existing superconducting patches are available, but a few work has been done on the operation of these antennas in large frequency band-widths and multiple frequency bands. In the study, a superconducting microstrip patch antenna was designed using surface impedance in superconductors and resonance frequency calculation techniques for superconducting vii pacth antennas. This antenna has a resonance frequency of 18 GHz with an area of 2.7×2.7 mm and an electrical wavelength of 0.32λ according to the dielectric coefficient of substrate which the antenna placed on. In this design, the bandwidth of the frequency band that the antenna on the chip has is increased by the fractal area subtraction method. A three-dimensional electromagnetic simulation program has been used to see the design results for the antenna and to make the necessary optimizations. From the simulation results, antenna parameters such as antenna gain, antenna directivity and antenna pattern were evaluated. In the next step, the antenna which has acceptable dimensions according to the optimization results, is manufactured according to the AIST-STP2 standard production process. Finally, test equipments for the manufactured antenna are installed and the simulation results and the compatibility of the measurement results are shown. This design ensures that superconducting microstrip patch antennas for imaging arrays have less loss and a wider frequency band.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.