Implementation of an In-House Platform for Rapid Screening of SARS-CoV-2 Genome Variations (original) (raw)

A Sanger-based approach for scaling up screening of SARS-CoV-2 variants of interest and concern

ABSTRACTThe global spread of new SARS-CoV-2 variants of concern underscore an urgent need of simple deployed molecular tools that can differentiate these lineages. Several tools and protocols have been shared since the beginning of the COVID-19 pandemic, but they need to be timely adapted to cope with SARS-CoV-2 evolution. Although whole-genome sequencing (WGS) of the virus genetic material have been widely used, it still presents practical difficulties such as high cost, shortage of available reagents in the global market, need of a specialized laboratorial infrastructure and well-trained staff. These limitations result in genomic surveillance blackouts across several countries. Here we propose a rapid and accessible protocol based on Sanger sequencing of a single PCR fragment that is able to identify and discriminate all SARS-CoV-2 variants of concern (VOCs) identified so far, according to each characteristic mutational profile at the Spike-RBD region (K417N/T, E484K, N501Y, A570D...

PCR-Sequencing Approaches to Assess Informative Mutations in SARS-Cov-2 Spike (S) and ORF7, ORF8 and N Genes Characterizing Variants of Concern and Variants of Interest

2021

Background: The high infectivity rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the prolonged duration of coronavirus disease 2019 (COVID-19) pandemics have contributed to the emergence of viral variants endowed with evolutionary advantages, leading to enhanced infectivity. The tracking of these lineages is urgent. However, the need to sequence whole-viral genomes through next-generation sequencing (NGS) represents a barrier hampering the massive identification of these variants. Therefore, in the current study, we developed Sanger-sequencing approaches targeting regions of interest containing vast lineage-defining mutations in the SARS-CoV-2 S gene and ORF8 region, allowing for unambiguous identification of all SARS-CoV-2 variants of concern (VOCs) and of interest (VOIs).Methods and results: Primers were designed for polymerase chain reaction (PCR) and nested-PCR to amplify and sequence samples with a low-viral burden. The primers’ annealing sites conserv...

A Simplified Sanger Sequencing Method for Detection of Relevant SARS-CoV-2 Variants

Diagnostics

Molecular surveillance of the new coronavirus through new genomic sequencing technologies revealed the circulation of important variants of SARS-CoV-2. Sanger sequencing has been useful in identifying important variants of SARS-CoV-2 without the need for whole-genome sequencing. A sequencing protocol was constructed to cover a region of 1000 base pairs, from a 1120 bp product generated after a two-step RT-PCR assay in samples positive for SARS-CoV-2. Consensus sequence construction and mutation identification were performed. Of all 103 samples sequenced, 69 contained relevant variants represented by 20 BA.1, 13 delta, 22 gamma, and 14 zeta, identified between June 2020 and February 2022. All sequences found were aligned with representative sequences of the variants. Using the Sanger sequencing methodology, we were able to develop a more accessible protocol to assist viral surveillance with a more accessible platform.

Enhancing the epidemiological surveillance of SARS-CoV-2 using Sanger sequencing to identify circulating variants and recombinants

Brazilian journal of microbiology, 2024

Since the emergence of SARS-CoV-2 in December 2019, more than 12,000 mutations in the virus have been identified. These could cause changes in viral characteristics and directly impact global public health. The emergence of variants is a great concern due to the chance of increased transmissibility and infectivity. Sequencing for surveillance and monitoring circulating strains is extremely necessary as the early identification of new variants allows public health agencies to make faster and more effective decisions to contain the spread of the virus. In the present study, we identified circulating variants in samples collected in Belo Horizonte, Brazil, and detected a recombinant lineage using the Sanger method. The identification of lineages was done through gene amplification of SARS-CoV-2 by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). By using these specific fragments, we were able to differentiate one variant of interest and five circulating variants of concern. We were also able to detect recombinants. Randomly selected samples were sequenced by either Sanger or Next Generation Sequencing (NGS). Our findings validate the effectiveness of Sanger sequencing as a powerful tool for monitoring variants. It is easy to perform and allows the analysis of a larger number of samples in countries that cannot afford NGS.

Precision Health Diagnostic and Surveillance Network uses S Gene Target Failure (SGTF) combined with sequencing technologies to identify emerging SARS-CoV-2 variants

2021

Several genomic epidemiology tools have been developed to track the public and population health impact of SARS-CoV-2 community spread worldwide. A SARS-CoV-2 Variant of Concern (VOC) B.1.1.7, known as 501Y.V1, which shows increased transmissibility, has rapidly become the dominant VOC in the United States (US). Our objective was to develop an evidenced-based genomic surveillance algorithm that combines RT-PCR and sequencing technologies to identify VOCs. Deidentified data were obtained from 508,969 patients tested for COVID-19 with the TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) in four CLIA certified clinical laboratories in Puerto Rico (n=86,639) and in three CLIA certified clinical laboratories in the US (n=422,330). TaqPath data revealed a frequency of S Gene Target Failure (SGTF) >47% for the last week of March 2021, in both Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in ...

Genomic surveillance, evolution and global transmission of SARS-CoV-2 during 2019–2022

PLOS ONE

In spite of the availability of vaccine, the health burden associated with the COVID-19 pandemic continues to increase. An estimated 5 million people have died with SARS-CoV-2 infection. Analysis of evolution and genomic diversity can provide sufficient information to reduce the health burden of the pandemic. This study focused to conduct worldwide genomic surveillance. About 7.6 million genomic data were analyzed during 2019 to 2022. Multiple sequence alignment was conducted by using maximum likelihood method. Clade GK (52%) was the most predominant followed by GRY (12%), GRA (11%), GR (8%), GH (7%), G (6%), GV (3%), and O (1%), respectively. VOC Delta (66%) was the most prevalent variant followed by VOC Alpha (18%), VOC Omicron (13%), VOC Gamma (2%) and VOC Beta (1%), respectively. The frequency of point mutations including E484K, N501Y, N439K, and L452R at spike protein has increased 10%-92%. Evolutionary rate of the variants was 23.7 substitution per site per year. Substitution ...

Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations

2022

The emergence of SARS-CoV-2 variants has prompted the need for near real-time genomic surveillance to inform public health interventions. In response to this need, the global scientific community, through unprecedented effort, has sequenced over 7 million genomes as of December 2021. The extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info, a platform that can be used to track over 40 million combinations of PANGO lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials, and the general public. We describe the data pipelines that enable the scalable ingestion and standardization of heterogeneous data on SARS-CoV-2 variants, the server infrastructure that enables the dissemination of the processed data, and the client-side applications that provide intuitive visualizations of the underlying data.

Molecular Epidemiology Surveillance of SARS-CoV-2: Mutations and Genetic Diversity One Year after Emerging

Pathogens

In December 2019, the first cases of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified in the city of Wuhan, China. Since then, it has spread worldwide with new mutations being reported. The aim of the present study was to monitor the changes in genetic diversity and track non-synonymous substitutions (dN) that could be implicated in the fitness of SARS-CoV-2 and its spread in different regions between December 2019 and November 2020. We analyzed 2213 complete genomes from six geographical regions worldwide, which were downloaded from GenBank and GISAID databases. Although SARS-CoV-2 presented low genetic diversity, there has been an increase over time, with the presence of several hotspot mutations throughout its genome. We identified seven frequent mutations that resulted in dN substitutions. Two of them, C14408T>P323L and A23403G>D614G, located in the nsp12 and Spike protein, respectively, emerged early in the pandemic and showed a consi...

Real-Time RT-PCR Allelic Discrimination Assay for Detection of N501Y Mutation in the Spike Protein of SARS-CoV-2 Associated with B.1.1.7 Variant of Concern

Microbiology spectrum, 2022

The N501Y amino acid mutation caused by a single point substitution A23063T in the spike gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is possessed by three variants of concern (VOCs), B.1.1.7, B.1.351, and P.1. A rapid screening tool using this mutation is important for surveillance during the coronavirus disease 2019 (COVID-19) pandemic. We developed and validated a single nucleotide polymorphism real-time reverse transcription PCR assay using allelic discrimination of the spike gene N501Y mutation to screen for potential variants of concern and differentiate them from SARS-CoV-2 lineages without the N501Y mutation. A total of 160 clinical specimens positive for SARS-CoV-2 were characterized as mutant (N501Y) or N501 wild type by Sanger sequencing and were subsequently tested with the N501Y single nucleotide polymorphism real-time reverse transcriptase PCR assay. Our assay, compared to Sanger sequencing for single nucleotide polymorphism detection, demonstrated positive percent agreement of 100% for all 57 specimens displaying the N501Y mutation, which were confirmed by Sanger sequencing to be typed as A23063T, including one specimen with mixed signal for wild type and mutant. Negative percent agreement was 100% in all 103 specimens typed as N501 wild type, with A23063 identified as wild type by Sanger sequencing. The identification of circulating SARS-CoV-2 lineages carrying an N501Y mutation is critical for surveillance purposes. Current identification methods rely primarily on Sanger sequencing or wholegenome sequencing, which are time consuming, labor intensive, and costly. The assay described herein is an efficient tool for high-volume specimen screening for SARS-CoV-2 VOCs and for selecting specimens for confirmatory Sanger or whole-genome sequencing. IMPORTANCE During the coronavirus disease 2019 (COVID-19) pandemic, several variants of concern (VOCs) have been detected, for example, B.1.1.7, B.1.351, P.1, and B.1.617.2. The VOCs pose a threat to public health efforts to control the spread of the virus. As such, surveillance and monitoring of these VOCs is of the utmost importance. Our real-time RT-PCR assay helps with surveillance by providing an easy method to quickly survey SARS-CoV-2 specimens for VOCs carrying the N501Y single nucleotide polymorphism (SNP). Samples that test positive for the N501Y mutation in the spike gene with our assay can be sequenced to identify the lineage. Thus, our assay helps to focus surveillance efforts and decrease turnaround times.

Relevant SARS-CoV-2 Genome Variation through Six Months of Worldwide Monitoring

BioMed Research International, 2021

Real-time genome monitoring of the SARS-CoV-2 pandemic outbreak is of utmost importance for designing diagnostic tools, guiding antiviral treatment and vaccination strategies. In this study, we present an accurate method for temporal and geographical comparison of mutational events based on GISAID database genome sequencing. Among 42523 SARS-CoV-2 genomes analyzed, we found 23202 variants compared to the reference genome. The Ti/Tv (transition/transversion) ratio was used to filter out possible false-positive errors. Transition mutations generally occurred more frequently than transversions. Our clustering analysis revealed remarkable hotspot mutation patterns for SARS-CoV-2. Mutations were clustered based on how their frequencies changed over time according to each geographical location. We observed some clusters showing a clear variation in mutation frequency and continuously evolving in the world. However, many mutations appeared in specific periods without a clear pattern over t...