FLOW PATTERNS OF THE ESTER OIL-REFRIGERANT R134A MIXTURE FLASHING FLOW THROUGH A SMALL DIAMETER TUBE (original) (raw)

A visual study of R-404A/oil flow through adiabatic capillary tubes

International Journal of Refrigeration-revue Internationale Du Froid, 2002

The present study explores the potential of using visualization techniques to investigate refrigerant/oil flow through adiabatic capillary tubes. A literature review shows that these techniques have been used before for capillary tube investigations, but none of these studies focused on the refrigerant/oil phenomena. Therefore, the main objective is to investigate the flow of a refrigerant/oil mixture through a glass capillary tube, with special emphasis on the behavior of the vaporization point. The test fluids are R-404A (a near azeotropic blend) and a polyolester-type oil. Experimental data cover oil concentrations ranging from 5.6 to 6.9% (by mass), degrees of subcooling ranging from 6.2 to 21.5 °C (11.2 F to 38.7 F), and a condensing pressure of 1825 kPa (250 psig). The results show trends of mass flow rate, and give some useful insights about the location of the vaporization point for various oil concentrations and operating conditions.The present study explores the potential of using visualization techniques to investigate refrigerant/oil flow through adiabatic capillary tubes. A literature review shows that these techniques have been used before for capillary tube investigations, but none of these studies focused on the refrigerant/oil phenomena. Therefore, the main objective is to investigate the flow of a refrigerant/oil mixture through a glass capillary tube, with special emphasis on the behavior of the vaporization point. The test fluids are R-404A (a near azeotropic blend) and a polyolester-type oil. Experimental data cover oil concentrations ranging from 5.6 to 6.9% (by mass), degrees of subcooling ranging from 6.2 to 21.5 °C (11.2 F to 38.7 F), and a condensing pressure of 1825 kPa (250 psig). The results show trends of mass flow rate, and give some useful insights about the location of the vaporization point for various oil concentrations and operating conditions.