Influence of the Heat Transfer on the Pressure Field in Radial Diffusers Flows (original) (raw)

In this thesis, heat transfer analysis of refrigerant flow in a condenser tube has been done. The main objective of this thesis is to find the length of the condenser tube for a pre-defined refrigerant inlet state such that the refrigerant at the tube outlet is saturated liquid or sub cooled liquid. The inlet refrigerant condition is saturated vapor. The problem involves refrigerant flowing inside a straight, horizontal copper tube over which air is in cross flow. Inlet condition of the both fluids and condenser tube detail except its length are specified. Here, changing pressure at discrete points along the tube is calculated by using two-phase frictional pressure drop and momentum equation mode. The heat transfer calculation has done by using condensation heat transfer correlations and simple heat transfer equations. The inside heat transfer coefficient calculated by using two phase heat transfer coefficient correlation. The unknown length of condenser tube has discrete many numbers of small elements. Each and every element has a calculations based on the pressure drop as well as heat transfer based on those correlation and every element calculated properties of refrigerant values has to check its states. At end of the iteration, a last element has reached saturated liquid condition of refrigerant and stops the entire calculation. So the length of condenser tube has been calculated by number of iteration and number of nodes with its distance. Predicted values were compared using another condensation heat transfer correlations. A computer-code using Turbo C has been developed for performing the entire calculation.