Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes (original) (raw)
Related papers
New coumaryl-thiazole derivatives with the acetamide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and in vitro tested as acetylcholinesterase (AChE) inhibitors. 2-(diethylamino)-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)acetamide (6c, IC 50 value of 43 nM) was the best AChE inhibitor with a selectivity index of 4151.16 over BuChE. Kinetic study of AChE inhibition revealed that 6c was a mixed-type inhibitor. Moreover, the result of H4IIE hepatoma cell toxicity assay for 6c showed negligible cell death. Molecular docking studies were also carried out to clarify the inhibition mode of the more active compounds. Best pose of compound 6c is positioned into the active site with the coumarin ring wedged between the residues of the CAS and catalytic triad of AChE. In addition, the coumarin ring is anchored into the gorge of the enzyme by H-bond with Tyr130. ARTICLE HISTORY
ISRN pharmacology, 2012
Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is considered a promising strategy for the treatment of Alzheimer's disease (AD). This research project aims to provide a comprehensive knowledge of newly synthesized coumarin analogues with anti-AD potential. In the present work a series of 3-thiadiazolyl- and thioxo-1,2,4-triazolylcoumarins derivatives were designed, synthesized, and tested as potent inhibitors of cholinesterases. These compounds were assayed against AChE from electrophorus electricus and rabbit; and BChE from horse serum and rabbit by Ellman's method using neostigmine methylsulphate and donepezil as reference drugs. Some of the assayed compounds proved to be potent inhibitors of AChE and BChE with K(i) values in the micromolar range. 4b was found to be the most active compound with K(i) value 0.028 ± 0.002 μM and higher selectivity for AChE/BChE. The ability of 4b to interact with AChE was further confirmed through computational st...
Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry, 2013
A series of 4-hydroxycoumarin derivatives were designed and synthesized as new acetylcholinesterase (AChE) inhibitors which could be considered for Alzheimer's disease therapeutics. Among the 19 coumarin-derived compounds tested toward Electrophorus electricus acetylcholinesterase (eelAChE) and horse serum butyrylcholinesterase (eqBChE), N-(1-benzylpiperidin-4-yl)acetamide derivative 4m displayed highest AChE inhibitory activity (IC 50 ¼ 1.2 mM) and good selectivity (37 times). The docking study of the most potent compound 4m, indicated that Phe330 is responsible for ligand recognition and trafficking by forming p-cation interaction with benzylpiperidine moiety. Furthermore, the formation of an additional pep interaction between coumarin moiety and Trp279 of peripheral anionic site could stabilize the ligand in the active site resulting in more potent inhibition of the enzyme.
International journal of biological macromolecules, 2017
A novel series of acridine-coumarin hybrids was synthesized and biologically evaluated for their potential inhibitory effect on both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The newly synthesized derivatives 9a-d have shown higher activity against human AChE (hAChE) compared with 7-MEOTA as the standard drug. Among them derivative 9b exhibited the most potent acetylcholinesterase inhibitory activity, with an IC50 value of 5.85μM compared with 7-MEOTA (IC50=15μM). Molecular modelling studies were performed to predict the binding modes of compounds 9b, 9c and 9f with hAChE/hBuChE.
Journal of the Brazilian Chemical Society, 2016
Coumarins are a large class of compounds that display a range of interesting biological properties, being considered privileged structures because of the ability of their 2H-chromen-2-one nuclei to bind to multiple pharmacological targets. We hypothesized that the linkage of a second pharmacophore nucleus to the 2H-chromen-2-one core, the 1,2,3-triazole moiety, would entail more selective and pharmacologically active coumarins. Therefore, we describe the synthesis of fourteen 4-methylcoumarins/1,4-substituted 1,2,3-triazole conjugates, which were predicted by in silico methods to inhibit acetylcholinesterase (AChE) and proved to be moderate in vitro inhibitors of this enzyme. Molecular docking simulations suggest that the most active of these compounds has a putative binding mode similar to donepezil, both occupying the peripheral anionic site of AChE, which is associated with the secondary noncholinergic functions of the enzyme. This highlights the potential of this series for further optimization in the search of new coumarins for the treatment of Alzheimer's disease.
Journal of Biomolecular Structure and Dynamics, 2018
The inhibitory efficacy of two substituted coumarin derivatives on the activity of neurodegenerative enzyme acetylcholinesterase (AChE) was assessed in aqueous buffer as well as in the presence of human serum albumin (HSA) and compared against standard cholinergic AD drug, Donepezil (DON). The experimental data revealed the inhibition to be of noncompetitive type with both the systems showing substantial inhibitory activity on AChE. In fact, one of the tested compounds Chromenyl Coumarate (CC) was found to be better inhibitor (IC 50 = 48.49 ± 5.6 nM) than the reference drug DON (IC 50 = 74.13 ± 8.3 nM), unequivocally amplifying its importance. The structure of the compound was found to play a vital role in the inhibitory efficiency, validating previous Structure Activity Relationship (SAR) reviews for coumarin. The mechanism of inhibition remained impervious when the experimental medium was switched from aqueous buffer to HSA, albeit noticeable change in the inhibition potency of the compound 3, 3'-Methylene-bis (4-hydroxy coumarin) (MHC) (38%) and CC (35%). Both the coumarin derivatives were observed to bind to the peripheral anionic site (PAS) of AChE and also found to displace the fluorescence marker thioflavinT (ThT) from AChE binding pocket. All experimental observations were seconded by molecular docking and MD simulation results. The inferences drawn in this study form a foundation for further investigation on these compounds; magnifying the probability of their usage as AD drugs and re-emphasizes the significance of drug delivery media while considering the inhibition potencies of targeted drugs.
Bioorganic & Medicinal Chemistry, 2012
A novel series of coumarin derivatives linked to benzyl pyridinium group were synthesized and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The enzyme inhibitory activity of synthesized compounds was measured using colorimetric Ellman's method. It was revealed that compounds 3e, 3h, 3l, 3r and 3s have shown higher activity compared with donepezil hydrochloride as standard drug. Most of the compounds in these series had nanomolar range IC 50 in which compound 3r (IC 50 = 0.11 nM) was the most active compound against acetylcholinesterase enzyme.
Iranian journal of basic medical sciences, 2017
To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole) using dibromoalkanes 3a-m: Final compounds were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by Ellman's method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 μM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrop...
Molecules
A small library of new drug-1,3,4-thiazidazole hybrid compounds (3a–3i) was synthesized, characterized, and assessed for their acetyl cholinesterase enzyme (AChE) inhibitory and free radical scavenging activities. The newly synthesized derivatives showed promising activities against AChE, especially compound 3b (IC50 18.1 ± 0.9 nM), which was the most promising molecule in the series, and was substantially more active than the reference drug (neostigmine methyl sulfate; IC50 2186.5 ± 98.0 nM). Kinetic studies were performed to elucidate the mode of inhibition of the enzyme, and the compounds showed mixed-type mechanisms for inhibiting AChE. The Ki of 3b (0.0031 µM) indicates that it can be very effective, even at low concentrations. Compounds 3a–3i all complied with Lipinski’s Rule of Five, and showed high drug-likeness scores. The pharmacokinetic parameters revealed notable lead-like properties with insignificant liver and skin-penetrating effects. The structure–activity relationsh...